AUTONOMOUS HIERARCHICAL ADAPTIVE MESH REFINEMENT
FOR MULTISCALE SIMULATIONS

BY
HENRY JOEL NEEMAN

B.S., State University of New York at Buffalo, 1987
B.A., State University of New York at Buffalo, 1987
M.S., University of Illinois at Urbana-Champaign, 1990

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois

THIS PAGE INTENTIONALLY LEFT BLANK.

(©Copyright by Henry Joel Neeman, 1996

i

AUTONOMOUS HIERARCHICAL ADAPTIVE MESH REFINEMENT
FOR MULTISCALE SIMULATIONS

Henry Joel Neeman, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1996
Michael Heath, Michael Norman, Advisors

Modern high resolution numerical simulations of multiscale physical phenomena require
enormous computer resources; however, these resources are largely wasted on subdomains
whose solutions do not require such high resolutions. Adaptive mesh refinement (AMR)
addresses this problem by providing a means to perform high resolution computation only in
areas that require it. In the AMR strategy discussed, a nested heirarchy of overlaying grids of
increasingly fine resolution — in both space and time — permits high resolution computation
in some areas and low resolution in others, either as a set of virtual grids, each encompassing
the entire domain, or as a means of zooming in on a subdomain of interest. However, this
AMR strategy is both subtle and cumbersome to code, and its data requirements are difficult
to manage in a general way. To address this shortcoming, the Hierarchical Adaptive Mesh
Refinement (HAMR) system provides support not only for AMR, but also for autonomous
data management, thereby decoupling the numerical techniques of a simulation from the

adaptive grid hierarchy to which it it applied.

il

For Teri

v

Acknowledgements

This work was supported in part by National Science Foundation grant ASC 9318185
and NASA grant NAG 5-2493.

I am grateful to the many people who helped me throughout this endeavor, not only for
their encouragement and feedback, but also for ideas on how to make things work, or work
better. Many thanks to my advisors, Michael Norman, Michael Heath and Dennis Gannon'
not only for all of their help but also for their patience over the long haul. Much appreciation
also to the rest of my committee, Paul Saylor, Faisal Saied and Donald Hearn, and to Eric
Golin, who was unable to remain on my committee because of a changes of jobs, but who
provided able assistance on my prelim.

An enormous number of people have provided feedback, support or just listened to me
rant. ['d like to express my appreciation to them all, but I'm sure I'll forget a few of them, and
they have my apologies in advance. For technical assistance, support and encouragement,
my thanks to Dinshaw Balsara, George Baxter, Noam Ben-Ami, Jim Bottum, Steve Brandt,
Jim Browne, Karen Camarda, Albert Cheng, Matt Choptiuk, Bob Fiedler, Mike Folk, Jill
Hanson, John Jaynes, Susan John, Ben Johnson, B.1. Jun, Tejas Katwala, Paul and Margaret
Klock, Pat Moran, Ruth Ann Nichols, Michele Plante, Ray Plante, Harold Ravlin, Barry

Sanders, Ed Seidel, Crystal Shaw, Larry Smarr, Chris Song, Doug Swesty, John Towns,

Robert Wilhelmson, Marianne Winslett, Jill and Peter White, and David Wojtowicz.

Dennis was unable to attend my defense because of inclement weather, and so does not appear on the
official forms, but he has acted as advisor during the course of my studies and research.

Among the people whose support was crucial to this endeavor are the staff of the National
Center for Supercomputing Applications, particularly Beth McKown, Shirley Shore, Debbie
Carrier and especially Jean Soliday. Without them, I would not have been able to take on
this project.

Several people provided detailed technical information and helped me to develop the
techniques described in this dissertation. My thanks to Peter Anninos, Marsha Berger,
Brian Jewett, Joan Masso, Nelson Max, Manish Parashar, John Shalf, Paul Walker, and Yu
Zhang.

If any one person has made HAMR possible, it is Greg Bryan. Not only has he provided
me with the physics to showcase my project, he has also contributed keen insight into the
details of adaptive mesh refinement techniques. And always with a smile. Thank you, Greg.

I also want to thank my family. On the Neeman side, my thanks for love and encourage-
ment to my parents, Moshe and Renate, to Jenifer and Ed, to Ed and Maria, and to Lisa
and Abby. And for welcoming me to the Murphy side, thanks to Pat, Johanna and Marilu,
as well as Dolly, Alec and Kathy.

Finally, the person I want to thank the most, without whom I could not have mustered
the confidence to tackle this project, nor the stamina to see it through, is my beloved wife,

Teri Murphy.

vi

Contents

1.1

2.1

2.2

2.3

2.4

3.1

Introduction 1
Structure of the Dissertation L oo 6
Computational Context oL 9
Data Geometries 9
2.1.1 Typesof Meshes 10
2.1.2 Coordinate Systems 14
2.1.3 Location of Variables L. 17
Finite Difference Methodso 20
2.2.1 Initial Conditionso 23
2.2.2 Exterior Boundary Conditions 24
Legacy Codes o e 30
SUMIMATY + + v v v v v e e et e e e e e e e e e e 31
Related Methodologies and Research 33
AMR Strategies on Unstructured Grids oL, 33

Vil

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

Multigrid Methods o 35

Moving Mesh Methods 38
Tree-Based Refinement 0oL 39
Moving Local Uniform Mesh Refinement 44
SUMIMATY + + v v v v v e e et e e e e e e e e e e 45
Overview of Berger’s Adaptive Mesh Refinement Strategy 47
Premise 48
Layout of the Hierarchy 48
Interpretations of Adaptive Mesh Refinement 52
4.3.1 Virtual Gridso 52
4.3.2 Zooming Grids oL 54
Berger’'s AMR Algorithmo Lo 57
4.4.1 Collection of Ghost Boundary Values 59
4.4.2 Evolving the Solution 0 o 65
4.4.3 Flux Correction for Conservation 65
4.44 Projection from Fine to Coarse Grids 70
4.4.5 Refinement 70
4.4.6 Selection of Cells to be Refined 76
4.4.7 Clustering Algorithmo oo 80
448 Regridding o 83
Evolution of Berger’'s AMR Strategy 84

viii

4.6

4.7

5.1

5.2

5.3

5.4

3.5

5.6

4.5.1 Allowed Mesh Types 85

4.5.2 Overlapping Grids 85
4.5.3 Rotated Grids o 87
454 Clustering L 88
4.5.5 Location of Variables 000 89
Related Research Using Berger’'s AMR 89
Popularity of Berger’s AMR Strategy 92
Autonomous Data Management for Grid Hierarchies. 95
A Data Structure for Grid Hierarchies 97
5.1.1 Scope and Extent of Data Items 103
5.1.2 Types . . o o e 106
Attributes L L 108
5.2.1 Attribute Categories Lo 109
5.2.2 Rules for Referential Attributes oL 113
5.2.3 Attribute Appendices Lo 116
The Specification 117
The Declaration 120
Modules o 123
Data Management 127
5.6.1 Management of Data Items 0L, 127
5.6.2 Management of Strata Lo 129

X

5.7

6.1

6.2

HAMR: A Software Framework for Hierarchical Adaptive Mesh Refinement . 133

Data Types o e 136
6.1.1 Element Types 136
6.1.2 Parameter Types oL 138
6.1.3 Type Attributeso 150
6.1.3.1 Structural Attributes 0L 150
6.1.3.2 Functional Attributes 157
The HAMR Function Library 0 161
6.2.1 Structured Library Functions 162
6.2.1.1 Memory Management 162
6.2.1.2 Assignments Lo 165
6.2.1.3 Reductions Lo 165
6.2.1.4 Comparisons e 169
6.2.1.5 Unary Operations 171
6.2.1.6 Binary Operations 171
6.2.2 Dimensional Library Functions 173
6.2.3 Method Library Functions 174
6.2.4 Spatial Library Functions 0oL 175
6.2.4.1 Contiguous Operations 176

6.2.4.2 Offset Operations 177

6.2.4.3 Striding Operations L. 180

6.2.4.4 Marginal Operations 182

6.2.4.5 Incremental Operations 185

6.2.4.6 Injection Operations 188

6.2.4.7 Projection Operations 189

6.2.5 Summary e 191
6.3 HAMR Autonomous Grid Hierarchy Management 193
6.3.1 HAMR Declaration 0o 194
6.3.1.1 Module Header Declarations 194

6.3.1.2 Data Item Declarations 197

6.3.1.3 Structured Data Declarations 198

6.3.1.4 Dimensional Data Declarations 200

6.3.1.5 Spatial Data Declarations 201

6.3.1.6 Method Declarations 203

6.3.2 HAMR Declaration Parser 204
6.3.3 HAMR Declaration Data Structure 207
6.3.4 HAMR Specification oo 209
6.3.5 The HAMR Data Structure 216
6.3.6 Data Item Macros Lo 221
6.3.7 Predefined Data Items L. 224

xi

6.3.8 Summary e 227

6.4 Algorithms for Berger’s AMR in HAMR 228
6.4.1 Control Algorithm o 229
6.4.2 Integration Lo 229
6.4.3 Refinement L 230
6.4.4 Regridding. 232
6.4.5 Boundary Collection 0oL 234
6.4.6 Incrementing Time Information 239
6.4.7 Richardson Truncation Error Estimation 240
6.4.8 Flux Correction 247
6.4.9 Summary e 253

6.5 HAMR Summary 253

7 Experimental Results oo 255

7.1 CMHOG: An Application for HAMR 255

7.2 The Shock Tube Problem 257

7.3 Simulating Comet Shoemaker-Levy 9 259

T4 SUMMATY o o e e e e e 261

8 Conclusion 273

Bibliography oL 277

Vita . . o e 285

xii

Chapter 1

Introduction

Many modern numerical simulations of multiscale physical phenomena require enormous
computer resources, in both memory storage and computing time, because their domains
are discretized on high resolution meshes. However, these resources are often largely wasted
on subdomains whose solutions do not require the maximum resolutions. Adaptive mesh
refinement (AMR) is a class of strategies that address this problem by performing high
resolution computation only in areas that require it.

Among the possible reasons for avoiding uniformly high resolution meshes are:
e some areas have small gradients, so the solution varies little among neighboring cells;

e in some areas the solution can be computed with sufficient accuracy on a low resolution

mesh;

e there may be many redundant phenomena in the domain, only a few of which need to

be studied at high resolution;

e various phenomena of interest in the simulation may occur at widely varying time and

length scales.

The literature for adaptive mesh refinement is extensive, dating back over more than
twenty years and continuing today as a rich field of research. AMR strategies have been
developed for elliptic, parabolic and hyperbolic systems. The many approaches vary con-
siderably, in both philosophy and implementation. AMR strategies have been successfully

applied to

e computational fluid dynamics (CFD),

e computational astrophysics,

e structural dynamics,

e magnetics,

e thermal dynamics,

e microwave theory

and many other areas of numerical research.
However, little work has been done in generalizing the adaptive strategies into flexible,
modular systems that promote relatively quick and simple “plug-and-play” approaches for

creating new adaptive simulations, and this lack is particularly noticeable in the context

of simulations on structured meshes. Such general-purpose systems require a number of

important properties, in order to provide maximal benefit to the research community:

Minimal knowledge of the system to add new applications.

A simple interface to data and methods.

Sophisticated memory management, to relieve the scientist of the burden of allocating

and deallocating grid space as the collection of grids evolves.

An extensive library of commonly used subroutines.

Geometric flexibility in mesh type, coordinate system, and staggered grid positioning,
for simulations that have variables at various positions in and around each cell — for
example, velocities at the nodes, energy fluxes at the edge centers and densities at the

cell centers.

FExpandability

to adjust to the needs of various numerical schemes;

— to incorporate new types of grids and new coordinate systems:;

— to be portable to many platforms — written in commonly available languages like

C and Fortran;

— to apply to many hardware architectures.

o Algorithm flexibility, because some sophisticated simulations require algorithms that

are rather complex.

o Clustering optimization, in which cells to be refined are decomposed into conformally

rectangular grids that make the best possible use of the capabilities of the platform.

In the AMR strategy discussed in this dissertation, developed by Marsha Berger and
collaborators, a nested heirarchy of overlaying grids of increasingly fine resolution — in both
space and time — permits high resolution computation in some areas and low resolution in
others. At each level of resolution, a set of subgrids covers those portions of the domain that
require at least that resolution, and each of these subgrids is in turn completely contained
in some subset of the grids at the immediately coarser level. In some cases, the types of
phenomena encountered at each level are of widely varying scales, so the refinement ratio
may vary from level to level. The strategy can be thought of either as a set of increasingly
fine virtual grids, each encompassing the entire domain, or as a means of zooming in on a
subdomain of interest. Most importantly, it addresses the concerns listed above.

The showcase for the research conducted in this dissertation is an implementation of this
AMR strategy, called the Hierarchical Adaptive Mesh Refinement (HAMR) system, which
not only implements Berger’s AMR strategy, but also addresses the problem of applying this
strategy to existing simulation kernels in a manner that is both intuitive and convenient.
Unlike other implementations of Berger’s strategy, HAMR is a general-purpose approach that

can be applied to a wide variety of numerical schemes, because it makes very few simplifying

assumptions about applications, their numerical techniques, and the data they require.

The design of HAMR 1is driven in large part by a desire to decouple the physics of a
simulation from the computing environment in which it operates, and especially from the
particulars of how data are allocated, how they are managed, and how they interact with
one another and with the methods that operate on them. The value of this approach is
that it isolates the scientific researcher from details that are irrelevant to the subject of the
experiment, and that can detract from the reasons for embarking on the research in the first
place. In today’s rapidly evolving research climate, too many scientists are having to learn
too much about too many topics that have little direct bearing on the actual nature of the
phenomena they are studying, because the methodologies with which they are presented,

while compellingly powerful, are often subtle and difficult to manage.

Berger’'s AMR strategy is such an extreme example of this situation that it has been
largely ignored as a practical approach to improving simulation efficiency. Yet the power of
the strategy is not in dispute: Berger, her collaborators, and the few other researchers who
have used her techniques have reported outstanding improvements in performance, especially
in experiments in three dimensions — precisely the kinds of experiments that contemporary
research attempts to address. But despite widespread acknowledgement of the importance
both of adaptive techniques in general and of Berger’s strategy in particular, its use has

remained confined to a small group of scientific researchers.

The motivation for the development of HAMR is to ameliorate precisely this situation.

1.1 Structure of the Dissertation

This dissertation is composed of eight chapters, of which this chapter is the first. The next
three provide background on numerical issues and the adaptive strategy of concern, while

the final four discuss the associated doctoral research.

Chapter 2 describes the computational context in which this research was performed.
Specifically, it covers the geometric issues associated with structured simulations, such as
mesh types, coordinate systems and staggerings; finite difference methods, including their
basic properties, as well as start-state issues such as initial and boundary conditions; and
finally, legacy codes, which present a significant implementation challenge in the design of
general-purpose AMR environments. The purpose of Chapter 2 is to lay down a clear, well-
defined set of motivations, which will explain both the design of Berger’'s AMR strategy and

its implementation in HAMR.

Chapter 3 examines a variety of related methodologies and research, including AMR
strategies on unstructured grids, traditional multigrid methods, moving mesh methods,
tree-based AMR approaches, and moving local uniform mesh refinement. This survey of
related literature will show the place of Berger’s AMR strategy in the battery of numerical
techniques, with respect to the variety of approaches to numerical simulation, and more

specifically to the field of adaptive methods.

Chapter 4 provides an overview of the AMR strategy of Berger and collaborators. This

overview is presented primarily from a theoretical point of view, but includes some discus-

sion of implementation issues and results of experiments using the strategy. Specifically,
the chapter examines the premise of Berger’s strategy; the layout of grid hierarchies; in-
terpretations of AMR, including virtual grid and zoom interpretations; an overview of the
AMR algorithm, including boundary value collection, evolution, flux-corrected conservation,
projection, refinement, selection, clustering and regridding; the evolution of Berger’s AMR
strategy over the last decade and a half, including changes in allowed mesh types, overlapping
grids, rotated grids, the clustering algorithm and staggerings; research that has employed
Berger’s strategy; and the relative lack of popularity of this strategy among computational
scientists. Thus, Chapter 4 is designed to clarify not only what Berger’s AMR is and how it
works, but also how it has been used and how the numerical simulation research community

has received it.

Chapter 5 describes a theoretical framework underlying autonomous data management
for grid hierarchies. It delineates a data structure for representing grid hierarchies, including
the scope and extent of data items as well as the categories of data types that are required;
attributes of data and methods, including several attribute categories, rules governing certain
attributes, and the means by which attributes are attached to the appropriate data items;
the specification, which describes the data, methods and their relationships; the declaration,
a user-produced description of this same information; modules, which encapsulate various
operations and categories of data; data management, of data items, of strata and of the
grid hierarchy. In this way, Chapter 5 clarifies the theoretical underpinnings upon which the

implementation, HAMR, is built. Furthermore, these theoretical discussions motivate the

explanation of the implementation itself, in the chapter that follows.

Chapter 6 describes the Hierarchical Adaptive Mesh Refinement system, and is divided
into four sections, each of which corresponds to one of the major components of HAMR. The
first section discusses HAMR data types, including element types, parameter types, and type
attributes. These types and their attributes apply well to the wide variety of data needs, and
to the myriad relationships these data can exhibit, for many classes of computational simu-
lations. The second section discusses the low level function library, including operations on
structured types, on dimensional types, on methods, and on spatial types. These operations
provide the computational foundation for the bulk of the functionality of both data man-
agement and the AMR algorithms. The third section describes HAMR’s implementation of
the autonomous data management concepts laid out in Chapter 5, including the declaration,
its parser, its data structure, the specification, the grid hierarchy data structure, data item
macros, and predefined data items. By encapsulating the data management within these
constructs, these operations can be completely decoupled from the application itself. The fi-
nal section describes the implementation of AMR algorithms for Berger’s strategy, including
control, integration, boundary collection, extrapolation, refinement, regridding, truncation
error estimation, selection, clustering, correction and projection. These algorithms do not
merely implement Berger’s AMR; rather, they expand and improve on it, by providing max-
imal generality and code reusability.

Chapter 7 presents the results of simulations performed using HAMR.

Chapter 8 presents conclusions and a summary.

Chapter 2

Computational Context

There are a variety of computational issues involved in numerical simulation techniques that
affect the manner in which adaptive mesh refinement must be designed and implemented.
Both the AMR scheme and the nature of the simulation itself impose restrictions on the
general AMR framework, and on the engineering details of software construction. Among
the computational issues that must be addressed are the geometries on which simulations
are performed, the finite difference schemes used, and the characteristics and requirements

of legacy codes.

2.1 Data Geometries

Numerical data come in a variety of geometries. Among the geometric degrees of freedom

are mesh types, coordinate systems and staggerings.

2.1.1 Types of Meshes

A field is a mapping from one space to another; for example, the mapping 7' : ®* — R
describes temperature T' in 3D space. A mesh is a collection of points or nodes and some
notion of connectivity among them. A grid is a set of discrete approximations of fields
mapped onto a mesh. (In the literature, mesh and grid are often used interchangeably. In

this dissertation, they refer to different concepts, to reduce ambiguity.)

Meshes come in several types (Figure 2.1). Each mesh type has its own means of speci-

fication, and for each there are associated strategies for refinement.

First, some meshes are empirical; that is, they are collections of nodes that have no
intrinsic connectivity among them. Empirical meshes can be refined by generating new nodes
in areas that require higher resolution. Alternatively, a connectivity can be imposed on a
empirical mesh by means of Delauney Triangulation [WS90], and then refinement methods

appropriate for unstructured meshes (see below) can be used.

Most numerical simulations use meshes with intrinsic connectivity. Of these, the most
generic in construction, and the most complicated to specify, is the unstructured mesh, which
is a collection of nodes and a description of the connectivity between them. This connectivity

is generally specified by the subgroup of nodes that delimit each cell in the mesh.

Unstructured meshes have arbitrary connectivity and geometry. Typically, each cell

is the simplex [Hof89], or minimal polytope, of the mesh’s dimensionality (for example,

[ZS7.790], [HST90], [RMC89]) — lines in one dimensional space, triangles in two dimensions,

10

Meshes

T

Empirical Unstructured Structured
X X
X
X
X
X
X
np Tp Te
(z1,y1) w1 (z1,y1) w1
(z2,y2) w2 (z2,y2) w2
(z3,y3) us (z3,y3) us
(l’n,,wn,,) Uy (l’n,,,yn,,) Unyg
(P1, P2, Ps)
(P2, P53, Py)
(Ps, Py, Pr)
(Pnp7P27P4)
Irregular Regular
Conformal Rectilinear Isotropic
T
|
\
Ny Ny ng Ny
Ny Ny Tl Ty .. Tng (xmm,ymm)
(1’1,171/1,1) U1,1 Y1 Y2 - Yny (xmam7ymam)
(z2,1,92,1) w21 U1,1 Ui
u2,1 u2,1
(Tng,ny: Yng ny) Ung,ny
Ung ,ny Ung,ny

Figure 2.1: Hierarchy of mesh types

11

tetrahedra in three dimensions — but this property does not always apply (for example,
[SC89], [MGS88]). In fact, in some cases a single mesh can consist of various different
simplicial complexes.

Mesh refinement on unstructured meshes is typically achieved by placing one or more new
nodes on the surface of, or inside, each cell that is to be refined — and perhaps adjusting
the positions of the nodes — and then connecting the nodes of the cell to the new node(s),
thereby creating a new set of finer cells from the coarse cell (for example, [LR8S], [MF8§],
[TRS90]).

A structured mesh, unlike an unstructured mesh, has its connectivity implicit in the
specification of the mesh; that is, the order in which the nodes are specified determines their
connectivity. Specifically, a structured mesh is an array of nodes, each connected to two
others along each axis (except for those on a surface of the mesh, which are connected to
fewer). The cells of a structured mesh are implicitly defined by the relationships between
nodes: a cell in a k-dimensional mesh is the space bounded by 2* nodes connected as a
(conformal) cube. Thus, structured meshes are arranged in the same manner as arrays in
computer memory.

Structured meshes are more difficult to refine than unstructured meshes, and are thus
the subject of this dissertation. This difficulty arises from the three possible approaches to

structured mesh refinement:

o cells can be added to the existing mesh, in which case its implicit connectivity is lost,

requiring that the associated structured mesh solution method be abandoned;

12

e nodes can be shifted about the physical domain to follow the most significant phenom-
ena, an approach which does not allow the total number of cells to grow, and which is

applicable to only the most general structured mesh geometries;

e multiple structured submeshes of varying resolutions can be added and their interac-
tions controlled, requiring considerable additional coding to manage both the refine-
ment and the associated data structure, but allowing both arbitrary refinement and

the use of solution methods applicable to simple, fixed geometries.

The most general kind of structured mesh is the conformal mesh. It has the connectivity
of a structured mesh, but its geometry — that is, the placement of its nodes and the shapes
of its cells in physical space — is arbitrary. It is specified by the positions of its nodes. Con-
formal meshes range from slight perturbations off the Cartesian axes (for example, [MLP90],
[Kim90], [D'T90]) to almost totally deformed (for example, [ALP90], [SPB8&9]).

Less general than conformal meshes are regular meshes. These meshes have mesh lines
parallel to the coordinate axes, and thus their geometric properties are far simpler than those
of conformal meshes. The two major types of regular meshes are rectilinear and isotropic
meshes. Rectilinear meshes have arbitrary spacings along each axis, so that cells may vary
in size (for example, [Dem91], [Jia89]). They can be described by the positions of the nodes
along each axis. Isotropic meshes are the simplest of all, a special case of rectilinear meshes
with all cells of identical geometry; they can be completely described by two diagonally

opposite corners of the mesh and the number of nodes along each axis.

13

In some cases, a simulation will use several interconnected structured meshes, or blocks,
rather than a single mesh. This approach permits cavities, regions inside the physical domain
that are not contained in the computational domain. For example, a jet engine can be
composed of many blocks, so that the boundaries abut the major components of the engine
— the hub, splitter and nacelle — and the domain is the air passages inside the engine
[Ste9l]).

Topologically, structured meshes are identical; their differences are exclusively geometric.
This shared property allows many kinds of structured meshes to be subject to the same kind
of mesh refinement strategies, because the meshes can all be treated as conformal cubes of
the appropriate dimension. Only the aspects of the refinement strategies that directly relate
to physical geometries of the meshes — for example, interpolation — need to be modified to

apply the strategies to the different types of structured meshes.

2.1.2 Coordinate Systems

A mesh can be defined on many different kinds of coordinate systems (Figure 2.2), and a
general-purpose approach to AMR must address the possibility of incorporating this geo-
metric variety.

The simplest and most common coordinate system is the Cartesian or rectangular coordi-
nate system. Cartesian coordinates can be specified completely implicitly and are commonly
used to describe the real world, so they are a natural basis for numerical simulation.

However, many meshes are instead defined in polar coordinates, typically one of three

14

OStH—F—+== S—t—t—t=2 5 ———+—= &
1D 2D 3D
Yy
Cartesian

P
0
Polar 2D Cylindrical 3D Spherical 3D
Polar
w\u1
1D 2D

Curvilinear

Figure 2.2: Coordinate systems

15

types. The simplest is two dimensional polar coordinates; in three dimensions, the two
polar systems are cylindrical (for example, [Bor90]) and spherical (for example, [Bar89]). In
principle, polar coordinates in dimensions higher than three are a natural extension of 3D
polar coordinate systems.

The most general coordinate systems are curvilinear. Such systems must be explicitly
described and may be only an approximation of the true coordinates desired. Also, it is im-
portant to distinguish between curvilinear coordinates and conformal meshes; the latter are
typically defined in Cartesian coordinates. In some cases, conformal meshes are transformed
into regular meshes as the Cartesian space is mapped into an appropriate curvilinear space
(for example, [ALP91]).

A special kind of mesh used in 3D polar coordinates is the Z%D polar mesh. For example, a
2D rectangular plane can be swept about the z—axis, producing a Z%D cylindrical mesh; a 2D
polar semicircular plane can be swept about a vertical line, producing a Z%D spherical mesh
(Figure 2.3). Computation and refinement occur on the 2D rectangular or polar mesh, but
the physical domain is a 3D cylinder or sphere, respectively. (An example of an application
that uses 21D meshes can be found in [SNM89]).

Given this multiplicity of coordinate systems, the best means of achieving a general-
purpose AMR system is to isolate the meshes’ geometric qualities as much as possible.
Specifically, the most general approach to AMR includes AMR algorithms most of which
rely on indices within the computational domain, rather than on physical positions. As for

AMR algorithms which require physical positions, they must be decoupled from the rest of

16

Figure 2.3: Cylindrical and spherical Z%D meshes

the AMR system, and they are rendered most efficient by incorporating whatever geometric

simplifications can be reliably assumed.

2.1.3 Location of Variables

Many multivariate applications require staggered grids; that is, grids whose variables exist
at various loci within and on the interfaces of each cell. In many cases, these loci will either
be at the nodes of the cells, or staggered half a cell width along each of some combination
of axes; that is, at edge, face and cell centers (Figure 2.4). Thus, in 1D systems, a grid can
have variables at the nodes and at the cell centers; in 2D, at the nodes, at the edge centers
and the cell centers; in 3D, at the nodes, edge centers, face centers and cell centers, and so
on.

In one example [LM92], stream function variables such as velocity are stored at mesh

17

[mv
-9 O .
© —~
- - - » 8 F o
g g g 3 £ O -
30 .mlC_Hn_ q] 30 EE 5]
= A = 1 Tl 2 a o < %
— [N o
i i i 0 O 2 =
o
=
DN/ T e
G- M M
Z
O———0—0—0—0——9 s O e O e O e O e O e O e O
D PP O TR TR T TR TR T
(-]
N 5 I o W
DD DHDHDHDHD i O B A
DT O T O T O TOT O T OO TS NN NSNS EE R
([
| s
DD DHDHDHDHD i O B A
DT O T O T O TOT O T OO TS NN NSNS EE R
([
| s
DD DHDHDHDHD i O B A
DT O T O T O TOT O T OO TS NN NSNS EE R
2 ([
= | s
—
GINE Y Yao ¥ Wanl Waoll Wa ol Wa ol Wa ol Wa ol e o O B B A
DT O T O T O TOT O T OO TS NSNS NSNS
/A ([
o | s
DN 2ol 2ol 2o o 2o ol ol o O B B A
DT O T O T O TOT O T OO TS NSNS NSNS
([
| s
DD DHDHDHDHD i O B A
DT O T O T O TOT O T OO TS NN NSNS EE R
([
| s
DD DHDHDHDHD i O B A
DT O T O T O TOT O T OO TS NN NSNS EE R
(-]
I
OO DD o B B B B B
N N A N A O A iV A A B B

Figure 2.4: Variable loci on staggered grids

18

G S %
T p
& ulf= <& [(H= u

~~
&
~—
~~
-
~—

Figure 2.5: Staggered grid example

nodes, while temperature is located at the cell centers (Figure 2.5a). In other examples
[TLVRI1], [WH92], velocities are stored at cell edges and other quantities (e.g., pressure) at

cell centers (Figure 2.5b).

However, meshes are not always staggered by half a zone size along each axis. In some

simulations, variables can be at fixed but arbitrary fractions of a zone size within each cell

(for example, [NP87]).

The AMR-related problem that these staggerings create arises because many AMR algo-
rithms produce results over all variables. Each such result is located on a specific staggering,
and all relevant variables that are on other staggerings must have their results transferred
to the staggering of the result. For example, if the region to be refined is selected based on
the values of the cell-centered density and the face-centered velocities, then the results for
those variables must be merged to produce an overall refinement region, which would be the

union of the individual variables’ refinement regions.

19

2.2 Finite Difference Methods

At the heart of every time-dependent numerical simulation is a solver, a module that evolves
the solution vectors of a partial differential equation forward in time by a specified time
interval. The solver captures the physical processes that govern the application; the rest
of the simulation software exists primarily to support the solver. Among the most popular
categories of spatially discretized numerical schemes are finite difference methods.

In finite difference methods, the solver is typically a function that maps the initial value
at a locus and at several loci surrounding it to a new value at the locus, such as would
be required for an initial value partial differential equation. For example, a simple two-
dimensional solver might look like so:

subroutine solve (u, ni, nj, istart, iend, jstart, jend, old, new)
integer ni, nj, istart, iend, jstart, jend, old, new
real u(ni,nj)
integer i, j
do j = jstart, jend
do i = istart, iend
u(i,j,new) =
F(u(i-1,j-1,01d),u(1i,j-1,01d),u(i+1,j-1,01d),
u(i-1, j,old),u(i, j,old),u(i+il, j,old),
u(i-1,j+1,01d),u(1i,j+1,0ld),u(i+1,j+1,01d))
enddo

enddo
end

This example has a three point stencil on each spatial axis and a two point stencil on the time

axis, and is referred to as a forward time, centered space scheme (Figure 2.6). In many cases,

20

® ® o
1 =3 1 =2 =17 1 +1 1 4+2 143 144

j+1

Figure 2.7: Stencil with a variety of component values

the mapping function F will actually operate not just over the range [i-1:i+1][j-1:j+1]
but rather over [i-s:i+s][j-s:j+s] for some constant stencil value s > 1. In fact, the
stencil value can be different along each axis, and indeed on each side of each axis; that is,
there may be different values for sxmin, sxmax, symin and symax (Figure 2.7).

Finite difference methods are subject to two primary concerns: consistency and stabil-
ity. Consistency means that the truncation error 7 — that is, the error inherent in the
finite difference approximation of partial derivatives — approaches zero as resolution grows
arbitrarily fine; that is, for zone width Az and time interval At,

Im 7=0
Azr—0,At—0

21

Sod expresses this as a case in which “... the differential equation fails to satisfy the finite
difference method by an arbitrarily small amount” [Sod85]. Stability is the condition that the
growth of errors in the solution is bounded for sufficiently small A¢. Haltiner and Williams

[HW80] give three definitions for stability:

o “ ... [The scheme’s] solutions remain uniformly bounded functions of the initial state

for all sufficiently small At”

o “... When the corresponding differential solution is bounded, a finite difference
scheme is unstable if, for a fixed ... conditions, there exist initial disturbances for

which the ... solution becomes unbounded”

e “... [T]he cumulative effect of all round-off errors remains negligible as n increases.”

The Lax Equivalence Theorem [Ric57] implies that a consistent, stable finite difference
method will converge — that is, approach the true solution — for appropriate initial condi-
tions and discretization.

A very common stability condition is that the ratio At/Ax falls within a particular
range, a condition of considerable significance for adaptive mesh refinement, since under this
condition stability does not depend on the absolute resolution, but rather on the ratio of
temporal to spatial resolution. Of course, an ideal problem is one that is both stable and
consistent, and for which 7 approaches zero very rapidly relative to Ax and At. In practice,
however, this case rarely arises, and in fact various subregions of the domain can converge

to the true solution at different rates.

22

In experimental numerical simulation, the analytic solution is not known; if it were, there
would be no point in imposing a discretization and a finite difference scheme on the differen-
tial equation, when the solution could be obtained directly. However, many researchers use
problems with known analytic solutions as tests for examining new numerical techniques,
since the numerical result can be directly compared to the true solution.

A finite difference method requires two kinds of input information: the initial condition

and the boundary conditions.

2.2.1 Initial Conditions

The wnitial condition provides a starting state for a simulation, from which the progress of
its evolution can be examined. At the implementation level, initial conditions fall into two
categories: those which are explicitly stored and must be loaded into the solution vector at
runtime, and those which can be calculated analytically.

Among explicitly stored initial conditions are phenomena that are observed in nature.
For example, McInnes, McBride and Leslie simulated a cold front over southeastern Australia
initialized from “... objective analyses produced routinely by the Bureau of Meteorology”
[MML94]. Another form of explicitly stored initial condition is that which has been computed
in a separate numerical simulation. For example, Bertschinger’s COSMICS package generates
initial conditions for cosmological simulations [Ber95].

As for analytic data, many classic problems have analytic solutions that make them ideal

candidates for exploring the accuracy of numerical techniques. For example, the transport

23

equation [MB92]

dp
o T Vipe) = 0

is an excellent initial test of finite difference methods, using the analytic solution at time
t = 0 for the initial condition. Similarly, initial conditions can be based on scalar values; for
example, a shock tube begins with each grid point of each variable initialized to one of two

scalar values for that variable, depending on which side of the shock interface it is located.

Finally, some of these techniques can be combined. For example, Wilhelmson and col-
laborators conducted a storm simulation based on observed data from a severe storm that
occurred in the southwestern United States, which was then perturbed to produce more ap-
propriate conditions [WJS*90]; Dudhia and Moncrieff simulated a squall line using a vertical
sounding translated to obtain horizontally uniform thermodynamic and wind profile, which

they then perturbed analytically. [DMS9].

2.2.2 Exterior Boundary Conditions

Boundary conditions for finite difference methods are often implemented by providing a set
of additional cells surrounding the active computational domain (Figure 2.8). These ghost
boundaries have values which express the boundary conditions of the differential equation
discretized by the finite difference method. Specifically, the ghost boundary values are pro-
vided to cover the stencil of the outermost cells of the computational domain, but their

values are not generally considered part of the overall solution of the differential equation.

24

Complete Grid

Grid Interior

Ghost Boundary Ghost Boundary

Figure 2.8: Ghost boundary region

Boundary conditions fall into two categories: those on boundary regions that are actually
contained inside the overall computational domain, and those that are exterior to the domain.
In the context of adaptive mesh refinement, this distinction is critical. Interior boundary
conditions are a separate case that will be discussed in the context of AMR. However, exterior
boundary conditions are universal; that is, all finite difference methods require them in some
form.

Among the most common types of exterior boundary conditions (Figure 2.9) are:

e periodic;

o reflecting;

o inflow;

25

Inflow

Periodic

Reflecting

Figure 2.9: Common exterior boundary conditions

26

Outflow

Figure 2.10: Grid with copied extrapolation boundary

e outflow;

e singularity.

Periodic boundaries have continuity of solution values on opposite ends of the mesh;
that is, the “rightmost” cell along an axis is computationally adjacent to the “leftmost”
cell. Conceptually, a periodic boundary is like an infinite chain of identical domains, in both
directions along each periodic axis. Reflecting boundaries are mirror images; that is, the
boundary value k exterior loci outside the domain interface is identical to the computed
value k interior loci inside the domain interface. Inflow boundary conditions often have
analytic values — for example, the amount of material being ejected from a source — and
outflow boundaries typically have extrapolated values. For example, the simplest outflow
extrapolation is to set the exterior boundary values equal to the computed value closest to
the exterior interface (Figure 2.10). Finally, singularity conditions are applied to collections
of computational values that represent a single physical position; for example, the center of

a circle or sphere in polar coordinates (Figure 2.11).

27

Figure 2.11: Grids with singularities

Many applications have combinations of these types of exterior boundary conditions. For
example, Anninos, Norman and Anninos [ANA95] study cosmological sheets with periodic
boundaries along the x-axis, a reflecting boundary at Yy, and an inflow boundary at ymax
(Figure 2.12). In fact, exterior boundary types can be combined within a single boundary.
For example, Stone and Norman [SN93] discuss a two-dimensional protostellar jet simulation
with outflow boundaries at a5, Ymin and Ymax, and with a reflecting boundary at z i, except

for a few zones in the center of that boundary, which are the inflow of the jet (Figure 2.13).

The almost limitless variety of exterior boundary conditions is a significant obstacle to
the development of general-purpose AMR frameworks. The problem is not simply that many

boundary conditions are entirely application-dependent, and therefore require the incorpo-

28

Periodic | Periodic

Reflecting

Figure 2.12: Exterior boundaries for cosmological sheets

Outflow

Reflecting
Inflow Outflow

Reflecting

Outflow

Figure 2.13: Exterior boundaries for a protostellar jet

29

ration of problem-specific subroutines. A far more serious problem is that some boundary
conditions require access to multiple subdomains which may be stored discontiguously. For
example, a periodic boundary condition requires access to the subdomain whose position is
either laterally or diagonally opposite from the interface associated with the boundary (as
can be seen in Figure 2.9), and presumably this second subdomain, which contributes to the
boundary values of the first subdomain, should be of the same resolution as the first. Thus,
the algorithms which implement these boundary conditions require considerable knowledge

about the data management approach of the system.

2.3 Legacy Codes

The use of computers for numerical simulation is a mature field. Over the years, scientists
have written, tested and used hundreds of simulation codes. Many of these codes have existed
in various forms for years or even decades, and have been altered over time to expand and
improve them. In addition, the many experiments that have been conducted using these
codes constitute a testbed for their reliability and accuracy, and in some cases the codes
have been algorithmically verified. Also, these codes often have multiple contributors, each
adding modules or even statements within existing modules. Such codes are called legacy or
historical codes, and more colloquially dusty decks.

Understandably, scientists with well-established legacy codes are reluctant to replace

them with new, completely rewritten codes. A significant risk in replacing a legacy code is

30

that some subtle aspect of the code might be overlooked or misunderstood, and that over
the long term a seemingly minor error might have serious consequences. Also, many of
these codes are thousands of lines long; rewriting them from scratch requires a significant
commitment of time and effort, which could otherwise be directed toward scientific research.

Thus, legacy codes present inherent obstacles to creating a general-purpose AMR frame-
work. The challenge is to develop the AMR system in such a way that an existing code can
be incorporated in a simple, consistent manner, with minimal reinstrumentation. An ideal
AMR system would allow a legacy code to be incorporated with no recoding whatsoever,
or with the recoding fully automated, but such an approach is unrealistic in the near term.
Still, a near-ideal AMR system would be able to incorporate a legacy code with only a few

hours of additional programming.

2.4 Summary

A variety of computational issues contribute to the requirements of adaptive mesh refine-
ment systems, especially those intended to be useful over a wide range of research topics,
applications, platforms and numerical schemes. Each of these issues presents a significant
challenge to those who would design such an AMR system.

Geometric and topological issues, such as mesh types, coordinate systems and stagger-
ings, require a broad-based approach to infrastructure design, the first two because the

adjustments they necessitate must be decoupled as much as possible from other aspects of

31

the system, and the last because the various staggerings may need to interact, and so the
notion of staggering must be fully embedded within the system.

The issues surrounding finite difference methods have perhaps the most significant impact
on the design of general-purpose AMR systems, because such methods are the reason that
structured AMR systems are designed in the first place. Both the abstract mathematical
underpinnings of these methods and the practical implementation details have fundamental
repercussions in the nature of multipurpose adaptive environments.

Finally, a great many of the simulations in use today are codes with long histories,
which would be difficult to redesign or to rewrite from scratch. Therefore, a general-purpose
AMR system must allow existing codes to be incorporated with minimal recoding by the

application scientist.

32

Chapter 3

Related Methodologies and Research

Unlike adaptive techniques for unstructured meshes, which are relatively simple to devise
and to implement, all of the existing AMR strategies on structured meshes are complex and
subtle, and they suffer from a variety of disadvantages that may make them appear unsuitable
or unattractive for many applications. But their study, and the study of related techniques
such as traditional multigrid methods, can provide insight into both the requirements of

structured AMR, and the means by which it can best be achieved.

3.1 AMR Strategies on Unstructured Grids

The literature for computational simulation of physical phenomena contains a wealth of
material about adaptive mesh refinement on unstructured meshes, as noted earlier. An

obvious possibility, then, is to reformulate existing structured simulations in an unstructured

33

context, and then applying the unstructured AMR techniques.

However, it is entirely unclear whether such reformulations are ideal or even practical.
An illustrative example of this dilemma is provided by computational fluid dynamics (CFD)
research, because little of the unstructured AMR literature describes the use of such grids

for CFD. Mavriplis [Mav90] points out

[The use of unstructured mesh techniques] in the field of computational fluid
dynamics (CFD) constitutes a relatively recent phenomenon. This situation is
probably due to the large overheads generally incurred with unstructured mesh
techniques, The advantages of unstructured meshes lie in the ability they
afford for flexibly discretizing arbitrarily complex geometries, and in the ease

with which they lend themselves to adaptive meshing techniques,

Mavriplis” point is well taken, but with the advent of the kinds of AMR strategies that
this dissertation addresses, unstructured CFD techniques — and particularly unstructured
AMR for CFD — may not be necessary. This point leads to an important criterion for
deciding whether a “plug-in” AMR system is easy to use: does it require that the scientist
completely reformulate the simulation of interest?

To adopt Mavriplis’ methods, one must restate one’s physical properties in the context
of an unstructured grid. This requirement is likely to be needlessly burdensome on the
scientist and is therefore far from ideal. Rather, an AMR system should permit existing “off

the shelf” simulations to be incorporated quickly and with a minimum of recoding by the

34

scientist. Therefore, a superior alternative to Mavriplis’ suggestion is to provide an AMR

technique which can be applied directly to a structured simulation.

3.2 Multigrid Methods

Multigrid methods are a class of simulation techniques which illustrate important principles
related to structured adaptive mesh refinement. These methods solve complex, sophisticated
simulations by rapidly reducing the error inherent in many single grid iterative methods.
Multigrid methods employ a hierarchy of grids of varying resolution, each grid covering
the entire computational domain (Figure 3.1). The underlying premise is that, although
iteration on a fine mesh quickly eliminates the high frequency components of error, low
frequency components take much longer, resulting in an inefficient or inaccurate solution
[SH90]. However, by iterating on meshes of various scales, the smoother error components
can be reduced quickly as well.

Multigrid methods have several different scheduling algorithms (Figure 3.2). The simplest
schedule is the V-Clycle, in which the system cycles from the coarsest to the finest grid and
then back. A popular cycling schedule for multigrid methods is the Full Multigrid V-Cycle
or FFMV schedule. Here, information is transferred from the finest grid to the coarsest grid,
by stepping upwards and downwards in resolution to a final, most accurate set of meshes.

Another popular cycling schedule is the W-cycle, named for the letter it resembles. In this

schedule, iteration begins at the coarsest mesh, recursively cycles down through increasingly

35

/
/) g
ya //
/ // /
7 -~
/ /. 7/
/ /s 7/
/ ys £ 4
/- 7
/ VY I,
/ II II
/ I, I,
/ II II
/ I, I,
/ s II

Figure 3.1: Multigrid hierarchy

36

ON~=U2 T

ON~=U2 T

h/r

h/r?
h/r3

ON~T2 TO W

h/r 7

h/r? 7
h/r3 7

V-Cycle

Order of Computation

FMV-Cycle

Order of Computation

W-Cycle

Order of Computation

Figure 3.2: Multigrid cycle schedules

37

fine meshes to the finest, and then slowly moves up and down, interleaving coarser and finer,
until it returns to the coarsest mesh. In some cases, the reverse strategy is used, with the
majority of iterations being performed on the coarsest mesh (for example, [Mav89]).

Multigrid methods are generally applied to systems of equations on which information
is propagated very quickly — for example, elliptic systems — and thus every cell affects
every other cell. In contrast, other systems propagate information very slowly; for example,
hyperbolic systems typically transfer information only between cells that are very close to
one another during any given integration.

Adaptive strategies which rely on multiple grids of varying resolution have much in com-
mon with traditional multigrid methods, which are a special case of certain classes of struc-
tured AMR strategies. Thus, such a general-purpose AMR implementation is likely to have
the added benefit of also being useful for traditional multigrid simulations, and for simula-

tions which employ a static collection of grids of one or many resolutions.

3.3 Moving Mesh Methods

Moving mesh methods are a class of adaptive strategies that refine by redistributing mesh

points, rather than by creating new meshes at different resolutions. As Miller says [Mil83],

The MFE [Moving Finite Element] method was developed to handle those
many nonlinear hyperbolic and parabolic problems that develop shocks or other

sharp moving fronts.

38

In MFE, nodes move around the domain and are concentrated on the front; the number of
nodes remains constant throughout.

The problems with MFE, and with moving mesh methods in general, are

o the methods are inherently non-uniform, so existing uniform grid solvers must be rad-

ically altered;

e the number of mesh points does not grow, but the complexity of the solution can, so
a given mesh size may prove insufficient for some evolving simulation, causing some
regions which require very high resolution to “steal” nodes from other regions which

are then insufficiently resolved.

Thus, while moving mesh methods may be useful for a limited class of applications,
they are inappropriate for a considerable portion of the simulation codes currently available.
The requirement that uniform mesh codes be entirely reformulated eliminates a great many
simulations, particularly those based on legacy codes, which makes moving mesh methods

unattractive to many researchers.

3.4 Tree-Based Refinement

Gannon describes a mesh refinement strategy in which each cell of a mesh is split into
identical subcells [Gan80]. The description of the mesh is stored in a quadtree-like structure

(Figure 3.3). Tests of this refinement strategy produce good results. Adjerid and Flaherty

39

1211 | \ \ \

Figure 3.3: Mesh and tree of quadtree-based refinement strategy

[AF88] describe a similar method.

However, the constraint on the refinement ratio, in which cells are exactly halved in each
direction, is insufficiently flexible, since it fails to permit the arbitrary scale control necessary
for sophisticated multiscale systems. If a simulation depicts phenomena that have a small
number of widely disparate length and time scales — for example, a large portion of the
universe, a cluster of galaxies and a galaxy — then these scales must be implemented by
many intervening levels, requiring considerable storage space and computation time, much
of which will be wasted in intermediate and uninteresting scales. On the other hand, if
the simulation requires a variety of scales based on optimizing the adaptation, then the
appropriate refinement factors must be accessible.

Thompson, Leaf and Van Rosendale describe a similar approach on a staggered, adaptive,
multilevel grid, which they use to solve incompressible Navier-Stokes equations [TLVR91].

As in the approach of Adjerid and Flaherty, this strategy employs a quadtree structure

40

| by
AR AN S 1.1 RELATIONS |[1,1 |2,1 |22 |3,1
= O A
O L AOoFOt NEXT NIL | 2,2 | NIL | NIL
= UA LA}
90\10 K \ PARENT NIL [11 |11 |21
A A A A NEIGHBOR ||NIL [1,1 |1,1 |NIL
/ NIL | NIL | 1,1 | NIL
=0 0O = NIL | NIL | NIL | 2,1
AN A NIL | 1,1 |NIL | 2,1
- O -
=0 =0 = KID 2,1 |3,1 |NIL | NIL
A A i 2,2
2.2 2.1 AUNT NIL | NIL | NIL | 1,1
NIL | NIL | NIL | NIL
NIL | NIL | NIL | NIL
NIL | NIL | NIL | 1,1
3,1

Figure 3.4: Mesh and tree of Thompson, et al.’s refinement strategy

(Figure 3.4). The strategy begins with a single grid — a patch in the authors’ terminology
— that is adaptively refined in a quadtree-like manner. Each cell to be refined on a given
level [becomes a patch on level [4+ 1, complete with its own set of interrelationships with
its parent, its parent’s siblings — the authors call them aunts — its own siblings — the
authors’ term is neighbors — and its children. More significantly, each patch has its own
ghost boundary space. Thus, after all patches at level [obtain their boundary values based
on these interrelationships, the patches can in principle be computed simultaneously, to
obtain the new iteration’s solution.

However, because the size and arrangement of patches on each level is arbitrary, and each
patch contains its own boundary space, the boundary space of the patches grows arbitrarily

with the spatial and scale complexity of the phenomena being examined. Thus, considerable

41

(a) Patch Interfaces (thick lines) (b) Wasted Boundary Space (shaded)

Figure 3.5: Boundary space in a quadtree

time must be spent passing information between patches. In addition, if boundary space
is added to each patch, considerable memory is required to contain all of the boundary
space. A great deal of the boundary space can become redundant, if the patches cover a
large, contiguous region (Figure 3.5). (The authors avoid the memory usage problem, so
the primary concern is communication time, which is of considerable significance on many
massively parallel processor and cluster architectures, in which not only the amount of data
communicated but also the number of times communication is initiated can significantly
increase the overall time to solution. In fact, one of the authors’ test cases demonstrates the

severity of the communication problem, with sizable regions in which this property holds.)

For many hardware architectures, this approach is not ideal; the main problem is the

size of the patches. Most architectures employ some equivalent of pipelining, in the sense

42

that they can most quickly perform a series of operations on large, physically contiguous
regions of memory. Thus, maximal optimization is obtained by performing an operation
over the largest possible region of memory. For each level, each pipeline is applied to a
subset of the patches, one at a time, and the solution method must be able to make the best
possible advantage of the pipelining. However, many pipelines produce the best results when
applied to memory regions of considerable length. For example, the Connection Machine
CM-2 architecture is best applied to an integer multiple of the number of processors, which
might well be in the thousands; the Cray C90 is best applied to vectors of length 64n,
n > 1. Thus, even in integration schemes that can pipeline an entire multidimensional
grid, the refinement may need to be very large in order to obtain reasonable speedup from
optimization, and in directional sweep schemes, the refinement will have to be excessive.
Further, these constraints will be almost entirely hardware dependent, requiring a complete
modification of refinement ratios for each new machine. But perhaps most important, these
hardware-imposed refinement ratios may have little to do with the scales of the physical

phenomena of interest.

However, the value of this AMR strategy is clearer in massively parallel architectures,
which may have relatively small local memories associated with many processors. Once all
patches have obtained their boundary values from their neighbors, each patch can be solved
independently from all of the others, so this approach leads to a natural decomposition that
can be quickly and easily distributed among a large number of procesors. However, in these

architectures, the number of patches should be np, n > 1, for p the number of processors, in

43

order to maximally balance the load. Because patch size is fixed for each level, it is difficult
to regulate the number of patches at each level; rather, the number of cells to be refined
at each level is arbitrary and changes during the simulation. Thus, an ideal balancing of
patches within processors — specifically, an equal number in each processor — is difficult.
However, this problem is not overwhelming, since it will require at most one undersized (and

thus wasteful) subset of patches distributed among a subset of the processors.

3.5 Moving Local Uniform Mesh Refinement

Gropp describes a class of mesh refinement strategies called moving local uniform mesh
refinement or MLUMR. In these strategies, a coarse uniform grid is overlayed with finer
uniform grids. The finer grids move, in the sense that the subdomain that they cover
changes as the solution evolves. In his original strategy, developed in the late 1970’s and
early 1980’s, Gropp used a single level of refinement created along a shock front [Gro80].
This refinement produced results as accurate as those with a uniform fine mesh but took
about half the time and saved considerable memory, if a sufficiently high refinement level
was used.

In Gropp’s more recent strategy [Gro87], many levels of refinement are possible, but
individual grids are important entities in and of themselves. In this approach, each grid has
a velocity with which it moves within its parent (Figure 3.6). Thus, regridding need only

occur when a grid crosses from one parent to another, or when two grids collide and therefore

44

Go,o

Gio

G

Gio

Got

Figure 3.6: Grid nesting in Gropp’s MLUMR strategy

join. However, the relationship between a grid and its parent is constantly changing. Gropp
uses this refinement strategy in order to take better advantage of pipelining capabilities, by

providing maximal data locality.

3.6 Summary

Adaptive mesh refinement techniques provide insight into the computational advantages
and disadvantages of structured meshes. Specifically, the simple, implicit connectivity of
structured meshes is both boon and bane: it is inherently easier to optimize operations
on such meshes, because they guarantee data locality, but it is also far more difficult to

adaptively refine them.

Traditional multigrid methods are an instructive example for studying cycling schedules.
While these methods are not adaptive, they illustrate the ways in which meshes of varying

resolutions can interact with one another, in order to solve unwieldy problems coopera-

45

tively. Thus, these methods give rise to a more complete understanding of multiresolution
requirements, a crucial issue for some classes of adaptive strategies.

The various structured adaptive refinement strategies that have previously been devel-
oped depict many of the issues that any structured AMR strategy must address. The pitfalls
include minimizing wasted space, ensuring sufficiently large subgrids to take advantage of
optimization capabilities, the need for flexibility in every aspect of the refinement strategy,
and the difficulty of adjusting existing simulation kernels to match the requirements of the
adaptive approach. To the extent that an AMR strategy addresses these concerns, it may

considered effective and eflicient.

46

Chapter 4

Overview of Berger’s Adaptive Mesh

Refinement Strategy

Since the early 1980’s, Marsha Berger has been developing an adaptive mesh refinement
strategy for structured meshes based on the notion of multiple, independently solvable grids,
all of identical type but each of arbitrary size and shape. She began this work with Joseph
Oliger at Stanford University [BO84] and has continued her research at the Courant In-
stitute for Mathematical Sciences at New York University, and the Research Institute for
Advanced Computer Science at NASA Ames Research Center, with other collaborators,
including Jameson [BJ85a], [BJ85b], Colella [BC89], Bokhari [BB87], Bell, Saltzman and

Welcome [BBSWI1], Aftosmis and Melton [AMB95], and Rigoutsos [BR90].

47

4.1 Premise

The underlying premise of Berger’s strategy is that all grids of any given resolution that cover
a problem domain are equivalent in the sense that, given proper boundary information, they
can be solved independently by identical means. In essence, the multigrid concept is adjusted,
reducing it from the highly accurate but computationally expensive set of increasingly finely
resolved grids, each of which covers the entire domain, to a set of resolution levels, each of
which employs a disjoint set of subgrids to cover progressively less of the domain. Because
the grid nesting is constantly changing, Gropp considers Berger’'s AMR scheme to be an
MLUMR strategy [Gro87]; however, in Berger’s AMR the grids do not move as such, but

rather are replaced with other grids that may cover only slightly different regions.

4.2 Layout of the Hierarchy

Berger’s AMR strategy features a hierarchy of resolution levels, each of which contains a
set of grids (Figure 4.1). Berger’s original implementation represents the hierarchy as a
directed graph that is acyclic on relationships between levels (e.g., from parent to child and
vice versa) but cyclic over all relationships (Figure 4.2'). Every grid is completely covered
by some non-empty set of parent grids; both its active computational interior and its ghost
boundaries are covered, except those portions of the ghost boundary that lie on the exterior

of the overall computational domain. In addition, the finer grids abut the coarser cells, so

!The figure is the candidate’s reproduction of a portion of Figure 5.1 on page 500 of [BO84].

48

EL.
G

Overall
Structure

Go,o

T 05 & 0T

=
=
o
= %
o g
¢ o
5 0
m £ 7
< A A
= v
! .
g v
m L
. I .
” =l | Vv
A||||||Vm A.|||_ -
. | <) =
. |
. | A
" o
" &
I }
I r-—-—=--
| I
N !
> il |
il !
| 7
NN 6 " o
N < mi
e
e
_ &)
5

Figure 4.1: A grid hierarchy

49

Figure 4.2: Graph representation of grid hierarchy

that the number of non-boundary cells along each axis of each finer grid is an integer multiple

of the refinement factor.

At the root level, each grid consists of a computational interior and a ghost boundary
region. At all finer levels, each grid consists of: a region of interest that has been refined from
the immediately coarser level; a buffer region, which allows the existing grids to continue
to cover fully the phenomena of interest, even if they travel, until the next regridding; and
the ghost boundary region (Figure 4.3). In some cases, the buffer region may be partially
absorbed if the grid abuts another grid at the same level (Figure 4.4). In fact, it is concep-
tually more appropriate to consider the buffer as surrounding the region of interest, which

may be distributed among several grids, rather than as surrounding the subregion of interest

50

Complete Grid

Figure 4.4: Abutting grids with partially absorbed buffer regions

51

that a specific grid contains. In any case, each grid will retain its full boundary region, even

if it is overlapped by other grids at the same level.

4.3 Interpretations of Adaptive Mesh Refinement

Berger’s strategy for adaptive mesh refinement can be interpreted in two different ways: ei-
ther as a series of increasingly fine virtual grids overlaying the same domain, or as zooming in
on a particular subdomain of interest. These interpretations give rise to differing approaches

in various aspects of the adaptation, particularly in selecting regions for refinement.

4.3.1 Virtual Grids

In the virtual grid case (Figure 4.5), a root level, coarsest set of grids covers the entire
domain. Overlayed on the root grids is a virtual finer grid, which also covers the entire
domain. However, this finer grid is implemented by a set of non-overlapping subgrids that
cover only those subdomains of the domain requiring the higher resolution, according to the
refinement criteria. This method of placing finer subgrids over coarser grids can be repeated
recursively, either to some predefined maximum resolution, or until the refinement criteria
no longer exceed the threshold at some level.

The finer subgrids on each level directly represent the finer virtual grid of that resolution
on the subdomains they cover, while the coarser grids indirectly represent the finer virtual

grid on the rest of the domain. Solution vector values of the finer virtual grid that are

52

Root (Level 0)

Grid

KEY

Actual

Subgrid

Virtual

Level 1

Grnd

KEY

Actual
Subgrid

Virtual

Level 1

Grnd

Figure 4.5: Virtual grid interpretation

33

contained in actual finer subgrids are obtained directly; the rest are obtained by injecting

from coarser grids as necessary.

Ultimately, the purpose of this approach is to represent every portion of the domain with
the minimal resolution required to satisfy some criteria. Therefore, this interpretation of
Berger’s strategy is most amenable to selection criteria which are automatic. For example,
the collection of grids may cover the domain such that, for all points in the domain P = (x,y),

the truncation error 7p < ¢, where ¢ is the refinement threshold.

An example of an application for which this interpretation is appropriate is the movement
of a shock front through a fluid [BC89]. In this case, the grid loci that contain the shock
must be computed at high resolution, in order to ensure low error for all solution values

(Figure 4.6).

4.3.2 Zooming Grids

The zooming interpretation approaches adaptive mesh refinement quite differently. Here,
the increasingly fine subgrids cover an increasingly small subdomain, or a small collection
of disjoint subdomains, within the overall domain, and these subdomains are explored in
more detail than the rest of the overall domain. (Figure 4.7). This approach to AMR is
difficult to perform automatically, because it often applies to domains that contain many
redundant phenomena, all of which would be selected by automatic refinement criteria. It is

most naturally achieved by interactive selection of refinement regions.

54

Figure 4.6: AMR on a moving front

35

Figure 4.7: AMR zoom

56

4.4 Berger’s AMR Algorithm

Berger’s AMR scheme employs the nested hierarchy of grids to cover the appropriate sub-
domain at each level. The integration algorithm recurses through the levels, advancing each
level by the appropriate time interval, then recursively advancing the next finer level by
enough iterations at its (smaller) time interval to reach the same physical time as that of

the newest solution of the current level:

Integrate (level)
begin

Evolve(level)

if "level isn’t finest" then begin

for r = 0 to time_refinement_factor - 1 do
Integrate(level + 1)

end

end

Thus, the order of the integrations is a generalized W-cycle (Figure 3.2), with integrations
at each level recursively interleaved between iterations at coarser levels (Figure 4.8). An
important effect of the integration order is that, as a general rule, the overwhelming majority
of computing time is spent on the finest level, as a direct result of the fact that Berger’s AMR
refines in time as well as in space: if the refinement factor between a finer level [+ 1 and
the next coarser level [is r, then grids on the finer level [+ 1 will be advanced r timesteps
for every coarser timestep. For a d-dimensional domain, the grids at level [+ 1 must cover
the same portion of the computational domain as only 1/r¢ coarser cells at level [, in order

to consist of the same total number of cells for the level, because every coarse cell covers r?

57

1st
Root

Level

2nd 9th

Level 1

3rd 6th 10th 13th

Level 2 } }

8th 11th 12th 14th 15th

Level 3 | | | | | | | | |

simulated physical time

Figure 4.8: Integration order in Berger’s AMR scheme

fine cells. Taking into account the r finer timesteps per coarser timestep, it is clear that the
timesteps on the finer level will take more computation time than one coarser level timestep

41 as much of the computational domain

unless the finer level includes no more than 1/r
as the coarser level. For example, using a refinement factor of two on a three-dimensional
domain, two iterations at level 1 will take more computation than an iteration at the root

level (which comprises the entire computational domain) unless the grids at level 1 cover no

more than 1/16 of the domain.

Integration requires five operations:

e boundary value collection, from parents, siblings, and the exterior of the

computational domain, as appropriate;

38

e cvolution, to advance the solution in time;

o flux-based correction, to ensure conservation at the interfaces between those coarse

cells that are overlapped by fine cells and those that are not;

e projection, to improve the solution values on coarse cells from the overlapping fine

cell values;

o refinement, to place grids appropriately for the evolved condition of the solution.

Thus, a more precise expression of the integration algorithm is:

Integrate (level)
begin
if "time to refine'" then Refine(level)
CollectBoundaryValues(level)
Evolve(level)
if "level isn’t finest existing" then begin
for r = 0 to time_refinement_factor - 1 do
Integrate(level + 1)
end
IncrementTime(level)
if "level isn’t finest existing" then begin
CorrectFluxes(level, level + 1)
Project(level, level + 1)
end
end

4.4.1 Collection of Ghost Boundary Values

Values for the ghost boundary cells surrounding each grid’s active region are collected from

three sources (Figure 4.9), as appropriate: by injecting from parents on the immediately

59

Figure 4.9: Sources of boundary values

60

Parents

Siblings

Exterior

Yi+1

Yi

Zi Tit1

Figure 4.10: 2D Area-weighted linear interpolation

coarser level, by copying from siblings at the same level, and by extrapolating from the

exterior of the computational domain.

Ingection transfers boundary values to a finer grid based on the values of its coarser parent,
typically by an interpolation. For example, a common type of injection is linear volume-
weighted interpolation, in which the values of the surrounding parental loci are weighted
by the diagonally opposite relative volume (shown in 2D in Figure 4.10). There are also a
variety of more sophisticated interpolation schemes, including higher order and conservative

schemes.

A fundamental principle of boundary collection is that a grid at a non-root level requires
maximal coverage: the entire active region of the grid, and as much of its boundary region
as possible, must be covered by some set of parent grids at the immediately coarser level,

except for those boundary regions exterior to the computational domain (Figure 4.11).

61

Figure 4.11: Grid coverage

62

Figure 4.12: Grid with incomplete coverage

Coverage 1s required because it promotes the principle of the mazimally accurate state: for
every call to the solver, the grid’s (non-exterior) boundary is at least as accurate as the
immediately coarser level. Coverage is fundamental because, unless it is guaranteed, it is
possible for a grid to obtain its input values from much less well resolved levels (Figure 4.12).
For a d-dimensional application of maximum depth /. and a refinement factor of r between

dt1 as well

each, each covered grid has (non-exterior) boundary values of no worse than 1/r
refined as its interior (computed) values, since the refinement is over d spatial dimensions
and one time dimension. This property holds at any level, from coarsest to finest, though
at the coarsest level the (non-exterior) boundary resolution is identical to the computed
resolution. An uncovered grid, on the other hand, may have (non-exterior) boundary values

only (1/rd+1)lmx as well resolved as its computed values, because it may need to draw some

of its boundary values from as far away as the root level.

When a grid’s boundary region is overlapped by another grid’s computed interior, the
former grid can obtain boundary values from the latter sibling grid by simple copying. Nat-
urally, this case is ideal, because it provides the best resolution possible for that ghost
boundary cell. However, many of the grids at a particular level will obtain some or all of
their boundary values from other than sibling interiors. The only way to guarantee that all
(non-exterior) boundary values are obtained from siblings is to refine the entire domain —
which would defeat the purpose of AMR. In this context, a grid’s siblings are only those

grids at the same level that overlap the grid’s ghost boundary region (Figure 4.13).

Superficially, it might appear that an appropriate source of boundary values would be

63

Go,o

G071 e

Go,o 1s the parent of Gy g’s interior and is a parent of Gy ,’s boundary.
Go,1 1s the parent of Gy ’s interior and is a parent of Gy ¢’s boundary.
G1,0 and Gy are siblings.

(1,2 has no siblings, despite the fact that it shares a parent with Gy ;.

Figure 4.13: Parents and siblings

grids at finer levels. The finer grids, after all, are even more well resolved than are their
parents. However, closer inspection of the AMR algorithm and integration order reveals
that drawing boundary values from children is not necessary, and would involve redundant
calculation. The reason is that each timestep at a level [is followed recursively by r timesteps
at level [4+ 1 for some refinement factor r. At the end of these r finer timesteps, the finer
grids have caught up in physical time to the coarser level — that is, ¢;y; = ¢; — and then
the finer values from level [4+ 1 are projected onto the coarser level [. Also, each finer grid
is completely covered by some subset of the coarser grids. Therefore, before the boundary
values are collected at level [, any boundary values that might have come from grids at level

[+ 1 have already been projected onto their parents — which are the siblings of the grid of

64

interest — at the end of the previous level [+ 1 integration.

The final source for boundary values is the exterior of the overall computational domain,
which requires extrapolation: constructing data that have not otherwise been computed. In
many cases, however, exterior boundary values are obtained not by extrapolation as such,
but by appropriate copying, in cases such as periodic and reflecting boundaries, or by an
analytic procedure, as is sometimes the case with inflow boundaries. For simplicity, however,
it is convenient to consider such conditions as degenerate cases of extrapolation, and thus to

refer to the process of obtaining any exterior boundary values as extrapolation.

4.4.2 Evolving the Solution

The solver or kernel of a simulation evolves the solution by advancing it forward by a speci-
ficed time interval. Although the solver is the lynchpin of any numerical simulation, its
details are not directly relevant to AMR, because the AMR abstracts it into a “black box”
operation; that is, given the correct input, the solver is expected to produce the correct

output, and otherwise is not a concern of the AMR strategy.

4.4.3 Flux Correction for Conservation

Berger’'s AMR strategy permits conservative numerical schemes [BC89], with conservation
achieved by a relatively simple adjustment to the numerical solver, and a simple, efficient
flux correction step.

Specifically, the solver receives as input not only the variables it needs, such as solution

65

: 1
Z—|—§

? 1+ 1
T T 1 1T 1 7T | %
‘ pS
; S
| g
| =
N NY FENY FERY VoY T
A A A AZ‘ -ﬁ\— —/r\- -ﬁ\— —/r\- -ﬁ\— —/r\- —+ FV—==T7+ +V=1=T7+ t>
> kS
: = T m+r—1
J =1 S m
> g
ST o1 __-_1T__-_1_3X
ANNTANNTANNTAANTAALAA
k
B+ 1

Figure 4.14: Flux correction at fine-to-coarse interfaces

vectors, grid descriptions (for example, the number of nodes along each axis), and integration
arguments (for example, the time step interval), but also special arrays for storing the fluxes
along the interface of each grid. These fluxes are collected after computing each timestep,
in separate arrays for each grid. The fluxes for the fine level are summed over all the fine
time steps that constitute a coarse time step, in a separate array, and the difference between
the fine fluxes and the coarse fluxes is used to correct the coarse solution values along the
fine-to-coarse interfaces.

The flux correction operation (Figure 4.14) is as follows:

o Let r be the refinement ratio.
o Let uij be the solution at the center of cell 7,5 at coarse level [.
o Let 1 be the flux at the interface between cells k,m and k + 1,m at fine level

k—l—%,m

66

[+ 1.
o Let fz'l+lj be the flux at the interface between coarse cells 15 and 7 + 1, j.
27

o Let F}iill .. be the total flux at the interface between fine cells k,m and &k + 1, m over
27

an entire coarse step — that is, over r fine timesteps.

o Let ni/ be the number of coarse cells along the y-axis.

{ 9

Initially, after integrating at the coarse level and storing the il S j=1... né, let
2 2,

I+1 _ I+1
Fk—l—%,m —0,1=1...n

After each fine time step,

I+1 I+1 I+1 _ I+1
Fk-l—%,m — Fk-l—%,m —I_fk-l—%,m’ l— 1ny

When r fine time steps have been performed, bringing the time of the fine level to that of

the coarse level,

r—1
o N I+1 gl . !
uH_L]%uw—l—(g fk—l—%,m-l—p i—l—%,ﬁ]_l“‘ny
p=0

The expressions are analogous for interfaces along other axes. (Actually, Berger gives a
similar, more elaborate expression based on unitless flux values rather than actual flux
through the specific cell.)

A more intuitive explanation of this flux correction procedure is that the algorithm records

67

the amount of material — for example, mass — that passes through an interface between a
fine grid and a coarse grid. When the coarse timestep is performed, the algorithm records the
coarse flux, which is the amount of material traveling through the interface during the time
interval of the coarse timestep. When each associated fine timestep is performed, the fluxes
through the fine cells composing that interface are recorded, and a running total of these
fine fluxes is maintained over the r fine timesteps that correspond to the coarse timestep
(Figure 4.15). In addition to summing along the timesteps — and thus along the time axis
— the fine fluxes are ultimately summed over all of the fine cell interfaces that contribute to
the coarse cell interface. Thus, a total of r? fine fluxes are summed over the r fine timesteps,

because there are r?=! fine cell interfaces for each coarse cell interface.

If the coarse cell and the corresponding fine cells arrive at exactly the same result, then
the difference between the coarse flux and the sum of the r? fine fluxes is zero, in which case
the correction does not change the value of the abutting coarse cell. In practice, of course,
the likelihood of the coarse and fine values being identical is extremely low, and in fact
would be considered problematic, in the sense of indicating an unnecessary refinement. The
purpose of flux correction is to adjust such a cell, on the assumption that the values on the
coarse and fine cells will not be identical. Thus, when the fine solution values are projected
onto the corresponding coarse cell, the amount of material traveling between that coarse cell
and the coarse cell that abuts it is the same as would result if the abutting coarse cell also
had corresponding fine cells. In this way, conservation is maintained on the fine-to-coarse

interfaces.

68

——=

——=

——=

——=

L4l

1= t+ At/4
1= t+ At/4
1= t+ At/4
1= t+ At/4

1=+ 2At/4
1=+ 2At/4
1=+ 2At/4
1=+ 2At/4

1= t+3At/4
1= t+3At/4
1= t+3At/4
1= t+3At/4

t4+ At/4
t4+ At/4
t4+ At/4
t4+ At/4

t
t
t
t

Ll oLL L L

L4l

Figure 4.15: Fluxes for correction

69

t—t+ At

+ 2At/4
+ 2At/4
+ 2At/4
+ 2At/4

t+ 3At/4
t+ 3At/4
t+ 3At/4
t+ 3At/4

t+ At
t+ At
t+ At
t+ At

4.4.4 Projection from Fine to Coarse Grids

Projection is the process of updating a coarser level, using the more accurate values of the
cells at the finer level to replace the covering cells on the immediately coarser level. Projection

can be achieved by any of a number of means, including

e copying, for example velocities at nodes;

e summing, for example masses at cell centers;

e averaging, for example densities at cell centers.

An important point here is that projection should occur after flux correction, rather
than before, because the projected values reflect the most accurate solution available. If
projection occurs before correction, then the optimal projected values may be corrected,
which is obviously undesirable. If, however, correction occurs first, then any corrected values
covering a finer grid will be replaced with the projected values, while those on true fine-to-

coarse interfaces will remain appropriately corrected.

4.4.5 Refinement

Refinement covers subdomains with grids of higher resolution. Refinement is probably the
most algorithmically complex operation in Berger’s AMR strategy. Like integration, it is
implemented recursively: a refinement at level [first refines level [+ 1, and so on recursively

to the finest level. In this way, proper nesting, or coverage, of the refined regions at finer

70

levels is ensured. The basic refinement algorithm is:

Refine(level)
begin
if "level is finest allowed" then return
if "level isn’t finest existing" then Refine(level+1)
Select(level)
Expand(level)
Cluster(level)
Regrid(level+1l)
if "timestep is initial" and
"level isn’t finest allowed" and "finer level is empty" then
Refine(level)
end

Even this simplified description of the refinement procedure is counterintuitive on its

face, but a statement-by-statement examination may prove helpful.
if "level is finest allowed" then return

This statement is the halting criterion of the recursion; no refinement of the finest level

allowed is possible.

if "level isn’t finest existing" then Refine(level+1)

In this statement, the refinement algorithm recursively calls itself on the finer level (Figure
4.16). Inductively, it may be helpful to assume that this statement works properly and
produces a properly nested hierarchy for all levels finer than [. Thus, while the existing grids
at level [+ 1 have not been replaced, all the grids at [+ 2 through . (if they exist) have
been, and all of those levels now cover all regions of interest that are contained within the

grids at [4 1.

71

Before refining level [+ 1

\\\\\\\

\\\\\\\

\\\\\\\

\\\\\\\

After refining level [+ 1

\\\\\\\

\\\\\\\

\\\\\\\

\\\\\\\

Figure 4.16: Recursive refinement of finer levels

72

Figure 4.17: Selection of refinement regions

Next, regions of interest on level [are selected:

Select(level)

Selection is described in more detail in in section 4.4.6, but for the moment it is sufficient to
note that the selection algorithm produces the appropriate regions of interest to be refined
(Figure 4.17).

The selected regions must next be expanded:

Expand(level)

Expansion serves to ensure coverage of the grids at finer levels. Fach selected cell is expanded
by the number of cells necessary to cover the next finer level’s buffer regions and the even
finer level’s boundary regions. In addition, the refined regions from grids at even finer levels

must be covered as well, so their subdomains are mapped onto the selection regions.

73

Figure 4.18: Clustering

Then, the expanded refinement regions at level [are clustered:

Cluster(level)

Clustering maps the set of refined loci into a set of rectangular regions, each of which

represents the subdomain that a new grid will cover (Figure 4.18).

Next, [+ 1 is regridded:

Regrid(level+1l)

That is, the grids at [+ 1 are replaced by grids that cover both the selected regions of

refinement at level [and the newly created grids at [4 2 through [i,ay (Figure 4.19).

The final statement of the refinement algorithm

74

Figure 4.19: Regridding the immediately finer level

if "timestep is initial" and
"level isn’t finest allowed" and "finer level is empty" then
Refine(level)

is used only to initialize the hierarchy. If the hierarchy is being initialized, then it is useful
and appropriate to create grids of as fine resolution as required. Furthermore, when the
refinement algorithm is executed at each level, there are as yet no grids at any finer levels.
Therefore, the algorithm recursively creates the next level, which does not need to refine
subsequent levels, since they don’t yet exist. But when that level has finished being refined,

it will in turn create further levels as necessary.

Thus, either the former or the latter recursive refinement may occur, but not both, since
the former occurs only if there are finer grids to cover, and the latter occurs only during

initialization, when there are no finer grids to cover, and when the values on the finer grids

75

are obtained from the initial conditions, rather than injected from (possibly far-removed)
coarser levels. It might be possible to dispense with the condition governing the latter
recursion, but that might inject very coarse values to very fine grids, and also could result

in O(Zlm""'l) refinements.

4.4.6 Selection of Cells to be Refined

Selection of cells to be refined is problem-specific: depending on the nature of the application
to which AMR techniques are applied, a variety of selection criteria can be applied.

The simplest selection criterion is comparing a solution value to a threshold; those cells
whose value exceeds the threshold are refined. This criterion has the advantage of being
simple and quick, but it is not particularly rigorous, and it rarely represents a physical
phenomenon of interest.

Another fairly simple selection criterion is comparing the gradient of a solution value —
that is, its local rate of change — to a threshold. While this criterion is not as simple as a
direct comparison of values, it is still quite simple and quick.

Berger recommends a more rigorous selection criterion, Richardson truncation error es-

timation:

e Let u(x,t) be the solution vector at position x and time t.

o Let Qj be the integration operator with mesh spacing h.

o Let ¢ be the order of accuracy of the integration method Q.

76

Thus,

u(x,t+ At) = Qp u(a,t)

Then the truncation error 7 is estimated by

Q%u(:z;, t) - QZhU(xv t)
20+ 9

=7+ O(h?*?)

In other words, the truncation error estimate is obtained by advancing the solution one
timestep of interval 2At¢ on a grid of mesh spacing 2/, advancing the solution two timesteps
of interval At on a grid of mesh spacing h (Figure 4.20), and comparing the results. The
method is not only an accurate error estimator, but also an intuitively appealing refinement
criterion. In a sense, it asks the question: how different would the results be if the solution
were evolved with the current resolution, as compared to using a different resolution? If the
answer for some cell is significantly different, then the cell is refined.

In principle, this error estimator is ideal for AMR, since it uses the same solver as is used
for evolving the solution. In practice, however, it can be somewhat unwieldy.

The difficulty is in the calculation of Qq,u. Computing this solution is trivial: it is simply
another call to the solver. In practice, however, setting the grid with mesh spacing 24 can
be considerably more complicated.

In principle, a simple approach is a striding copy, copying every other locus to a grid
of half the size, the computing a solution. If the striding copy is performed twice for each

dimension, for a total of 2¢ calls on grids of 1/2¢ cells, and the partial results copied back

77

x o, 0, 1 2 s .
e O ° I ° I ° I °
\ ¥ Q(Q(u, dz. dt)) N 4
T
a0 1 2t eyt
Q(u, 2dz, 2dt) left
--G-4----1 A ® --G-4----1
27 0" 9 * ;! 6
Q(u, 2dz,2dt) right
--G-4----1 A --@-4-----
1 1! 3"’ 5
B Y A P P T
a0 "1 et 9yt s

Q(u, 2dx,2dt) combined

Figure 4.20: Computing the Richardson truncation error estimate

78

(
' | . | . | o{
3720 1 2ty 56
y y y y y v ?
o frornefon oo —or o fon
Y A N S 2 SR 1/

Q(u, 2dx, 2dt) left

Figure 4.21: Richardson truncation error estimation boundaries

into appropriate holding fields, then the Qo,u solution is obtained. While perhaps somewhat

cumbersome to code, this set of striding copies is not particularly complicated.

However, the boundary zones must also be obtained at mesh spacings of 2h (Figure
4.21), and this constraint can be problematic. In order to obtain boundary values, either
the computational interior of the grids must be expanded, or the boundary values must be

obtained from the boundaries of the parent grids. The former approach is more expensive,

the latter is less accurate.

Not coincidentally, some AMR implementations — including Berger’s original AMR code
— make significant adjustments to the body of the solver to simplify computation of Qspu.
To some extent, however, such alterations defeat one of the primary advantages of Berger’s

AMR strategy: that it can be quickly and easily applied to new applications, by incorporating

79

their solvers and other relevant routines with a minimum of recoding.

4.4.7 Clustering Algorithm

The clustering algorithm of Berger and Rigoutsos [BR90] (Figure 4.22) is based on a method
used in computer vision and pattern recognition. The algorithm is as follows: first, a minimal
bounding box is placed around the cells that have been flagged to be refined. Next, a
stgnature list is computed along each grid axis. A signature ¥; is the number of flagged

entries along the 7" grid surface; e.g., a grid line in 2D, a grid plane in 3D, and so on:

1 if cell 15k 1s flagged

Si=>> fijr, where fij =
ik 0 otherwise

Then, any zero entry in the signature list of any axis is a grid surface perpendicular to that

axis that contains no flagged cells, and thus this zero entry is a potential cutting index. The

best of these zero entries — the most central along some axis — is used as the cutting index

to subdivide the domain.

In many cases, the signatures are all nonzero, yet these signatures are often obtained
from arrangements of flagged cells that clearly can be further decomposed. In this case, the

Laplacian second derivative of the signatures

Ay =X — 2% + X

80

|Ziy 1] 4 2 3 6

ibe
(%)
(%)
(@2}
(@2}
(@2}
o
o
[N
ibe
(%)
(%)
(@2}
(@2}
(@2}
[N

o o O
(S50 B S) B L o N

$

[B L L S 1 5 N

(d) (c)

Figure 4.22: Example of clustering by signatures (clockwise from upper left)

81

is used. A zero crossingis an index where A changes sign, and any zero crossing is a potential

cutting index. The best zero crossing is the one whose magnitude

Zipr = |Aip — A

is largest, and this index is chosen as the cutting index.
The clustering algorithm recurses on each subregion; thus, the algorithm traverses a k-d
tree [Ben75] with specially defined cutting criteria. Recursion continues until some halting

criteria are satisfied. Typical halting criteria for a cluster are:

e the cluster is at least some minimum efficiency threshold ¢, in the sense that the ratio
of the number of its cells that are flagged for refinement to the total number of cells

in the cluster is at least c;
o further partitioning of the cluster would produce subclusters too small to be optimized.

In some cases, recursion continues even if the regions already produced meet the halting
criteria; for example, the algorithm may wish to produce clusters of no greater than a
specified size, so any cluster larger than that is bisected along the longest axis, in much the
same manner as the cutting criterion for a standard k-d tree.

An important point here is that the clustering algorithm operates entirely in computa-
tional space. Thus, it is not only more efficient, since it operates in O(nlogn) time on the

number of cells, 1t is also easily adaptable to curvilinear grids.

82

4.4.8 Regridding

Regridding creates new grids at a finer level to cover the selected area of refinement at the
immediately coarser level. In principle, the operation is very simple:
Regrid(level)
begin
if (newclusters > 0) then begin
CreateNewGrids (level)
if (level > 0) then
InjectInteriorsFromParents(level, level-1)
if (oldclusters > 0) then
CopyInteriorOverlaps(level)
end

if (oldclusters > 0) then Delete0ldGrids(level)
end

Thus, the values on the new grids’ computational interiors are at worst one level of resolution
less well resolved than the old grids that they replace, and typically most of the values are
actually copied directly from the old grids, so very little information is lost. In fact, if the size
of the buffer regions is carefully chosen, the new grids will be sufficiently resolved everywhere
(Figure 4.23). This condition arises because the cells of the old grids that do not overlap the
new grids are, by definition, the regions where the solution no longer needs to be so finely
resolved. In contrast, the cells of the new grids that are not overlapped by the old grids, and
that are therefore outside the old grids’ buffer regions, are — for carefully chosen buffer sizes
— outside the region of interest of the new grids, since the purpose of the buffer regions is
to anticipate the movement of the phenomenon of interest and to continue to cover it until

the next regridding.

83

Old Original Region of Interest Old
Buffer Buffer
- - S
| |
Wasn’t Was interesting, | Continues to be Has become Not yet
interesting but no longer interesting interesting interesting
l R S
|
New Grid ¢ \ / \ / \ /
‘ New Evolved Region of Interest 1 New :
Buffer . Buffer
Values injectedi
Values copied from old grid . friom parent !

Figure 4.23: Copying from old to new during regridding

4.5 Evolution of Berger’s AMR Strategy

Berger’s AMR strategy has changed in several significant ways over the last decade. Some
aspects of the system have been improved, some altered and some completely eliminated.
When Berger first implemented her strategy [Ber83], it had several properties that no

longer hold:

o all grids were isotropic;
o grids at the same level could overlap;
e grids could be rotated with respect to the coordinate axes;

o the clustering algorithm was inefficient;

84

e variables were located at the nodes.

4.5.1 Allowed Mesh Types

The first concern, that grids could be only isotropic, was easy to dispense with, by adding
program mechanisms which had the capability of recognizing and addressing rectilinear and

curvilinear grids [BJ85b].

4.5.2 Overlapping Grids

In Berger’s original strategy, grids at the same level of resolution were allowed to overlap
one another, creating a situation that can give rise to two significant problems: waste and
flux overcorrection.

First, overlapping grids are wasteful. This issue is not merely a matter of a few extra
cells at the level of the overlap. Rather, overlapping has a subtler and more significant im-
pact: at finer levels, entire complicated structures can be duplicated [Bry96a] (Figure 4.24),
consuming not only considerable additional memory, but also a great deal of computation
time, because the majority of computation is on the finer levels.

Second, overlapping grids complicate flux correction. During the correction step, each
grid contributes its flux values to the flux correction of its parent(s). When two grids overlap,
the flux correction is performed twice around the region of overlap (Figure 4.25), unless great

care is taken to ensure that this overcorrection does not occur.

85

Gl,17Gl,2

Gl,o /

Gis

)

Gig1,2,Gig13
Gi41,0,Gig1

Gi1a

Figure 4.24: Duplicated fine structure in an overlap region

Gthl?

))

Gl,o /

Gis

Gi1a

Figure 4.25: Inappropriate flux correction in an overlap region

86

4.5.3 Rotated Grids

Rotated grids, long a staple of Berger’s strategy, were ultimately dispensed with. Berger
notes that, although they covered the refinement regions more efficiently, in the sense that
fewer nodes were unnecessarily refined, their efficiency contribution was small, only about
15% [Ber91]. In addition, flux correction for conservation at interfaces between coarse and
fine grids, which is simple with fine grids that line up along coarse gridlines, is consider-
ably complicated by rotated grids [Ber85]. Also of significance is the added computational
overhead required: when grids line up, interpolation between coarser and finer grids is quite
simple, and degenerates to simple copies between grids of the same resolution. With ro-
tated grids, however, all interpolations involve point location, which on rectilinear grids is
O(log n%) on the number of cells and on curvilinear grids is O(log®n) [PT92] (although some
heuristics typically produce better results in many cases [Wil92], [Nee90]). Furthermore,
every interpolation between any pair of grids must be based on positions in physical space,
because distances between positions can be expressed only as floating point values (Figure

4.26). Thus, the computational overhead can be excessive, as can be the coding overhead.

Another problem that arises with rotated grids is that grids at the same level can overlap.
In addition to the problems associated with non-rotated overlapping, each rotated overlap
region has multiple, slightly different solution values for the same physical position, which

renders the concept of a “solution” ill defined.
Perhaps most important, though, is that in order to use rotated grids, the solver must

87

Figure 4.26: Interpolating between rotated grids

have mechanisms to determine the rotation and apply it to the numerical physics. This

requirement can be unnecessarily burdensome to the application scientist.

4.5.4 Clustering

Berger originally used a modified minimal cost spanning tree algorithm for clustering, with
the distance between nodes being the cost. The algorithm was as follows: first, the nodes
that required refinement were split into clusters, based on proximity. Then grids were fitted
around the clusters. Finally, the grids were tested to determine whether merging any pair
of grids produced a reasonably efficient single grid, thus reducing the boundary space of
the grids. This approach to clustering was not only highly heuristic, it was very time—

consuming, because constructing a minimal cost spanning tree is O(n?) on the number of

88

nodes requiring refinement, and merging is O(¢*) on the number of grids. Over time, Berger
pursued a number of different clustering strategies, but the one she ultimately settled on,
based on signatures, has several advantages: it is fast, performing in O(nlogn) time on the
number of cells; it produces a good clustering in most cases and an acceptable clustering
in all cases; it operates in computational rather than physical space; and it produces no

overlaps.

4.5.5 Location of Variables

Berger’s original system permitted variables to be located at the nodes only. However,
with the introduction of flux correction to ensure conservation, and with the use of the
new, signature—based clustering algorithm, it became necessary to locate the variables at
cell centers. This decision proved useful in a number of ways, particularly because many
of the phenomena to which Berger’s AMR strategy was applied had cell-centered solvers.
However, choosing cell centers over nodes, while perhaps more popular, is nonetheless still

quite restrictive, because many multivariate applications require staggered grids.

4.6 Related Research Using Berger’s AMR

There are several examples in the literature of experiments conducted using Berger’s AMR
strategy. These examples cover a wide variety of application areas, including computational

fluid dynamics, meteorological simulations, materials science and general relativity.

89

Berger, with various collaborators, has produced more than a dozen publications on
various aspects of her AMR strategy. Among the issues she has studied have been the
AMR strategy itself [BO84], [BC89]; AMR data structures [Ber83], [Ber86]; conservation
issues [Ber87]; the signature clustering algorithm [BR91]; implementation, distribution and
load balancing issues on MPPs [BB87] and on SIMD architectures [BS94]; modeling embed-
ded surfaces in adaptive hierarchies [AMB95]. She has also collaborated on studies of the
application of her AMR stragegy to specific research topics, for example two-dimensional
Euler equations for transonic flows [BJ85al], [BJ85b], and interaction of shocks and bub-
bles [BBSW94]. Generally, Berger’s work has addressed applications in computational fluid

dynamics.

Skamarock has used Berger’s AMR strategy to study numerical weather simulation and
prediction, beginning with his work in 1987 with Oliger and Street [SOS89]. Skamarock’s
implementation is based on Berger’s original strategy [BO84], and thus he uses rotated,
overlapping grids. Among the topics his research has examined are severe convective storms
[SKW91], nonhydrostatic atmospheric flow in two and three dimensions [SK93], and long-
lived squall lines [SWK94]. In addition, he has examined a variety of truncation error
estimates in order to optimize the selection of regions to be refined in the class of problems
that he studies [Ska89].

Some of Berger’s collaborators, including Colella, Welcome and Bell, have published AMR
studies separately from Berger as well, often collaborating with one another. For example,

the three of them, with Pember and Crutchfield, have studied methods of embedding irreg-

90

ular regions within adaptive hierarchies [PBC195]. Pember, Crutchfield, Bell and Colella
joined Greenough and Beckner in studying interface-capturing in multifluid flows [GBP*95]
using Berger’s AMR. And Crutchfield, Bell and Colella joined Steinthorsson and Modiano
in studying unsteady viscous compressible flows [SMC*95].

Another group of researchers using Berger’s AMR strategy belong to the Binary Black
Hole (BBH) Grand Challenge consortium. For example, Massé, Seidel and Walker describe
a numerical relativity AMR implementation for evolving Schwarzschild spacetime in one di-
mension [MSW95]. In addition, Choptiuk has developed a Fortran 77 AMR implementation
for studying numerical relativity in multiple dimensions [Cho94]. Also, Haupt describes a
Fortran 90 implementation of the AMR strategy [Hau95] that may prove useful for developing
new AMR implementations.

Another member of the BBH consortium, Parashar, has developed perhaps the most
promising approach to distributing AMR grid hierarchies. Parashar’s AMR implementation,
called the Distributed Adaptive Grid Hierarchy (DAGH) system, achieves load balancing and
minimizes communication by distributing the grid according to a self-similar space filling
curve [PB]. In addition, Parashar’s C++4 implementation provides some object-oriented
abstraction of many mesh and AMR concepts. Thus, implementing AMR versions of existing
applications involves only a moderate amount of C++ coding.

A few other researchers are using Berger’'s AMR strategy. For example, Meakin discusses
the relationship of Berger’s strategy to overset grids, in which grids of different geometries

overlap one another [Mea95]. Finally, Kohn and Baden have implemented AMR support

91

using LPARX, a runtime parallel support system implemented as a C++ class library [KKB95].

4.7 Popularity of Berger’s AMR Strategy

Berger’s AMR strategy shows incredible potential as a means of expanding the tractability
of a wide variety of numerical experiments. For example, one of Berger’s recent three-
dimensional experiments exhibited an improvement over conventional techniques by a factor
of 55 [BBSW94]. And yet, relatively few researchers are using this strategy, despite the
fact that it has been available for over a decade. By contrast, dozens if not hundreds of

researchers use AMR techniques on unstructured grids.

Most of those who use Berger’s strategy are concentrated in a few small interlocking
research groups. For example, Berger’s work at RIACS led to collaborations with Pember,
Bell, Crutchfield and Welcome of Lawrence Livermore National Laboratory and Saltzman
of Los Alamos National Laboratory, and most of these researchers have also collaborated
with Colella of the University of California, Berkeley. Skamarock, now at the National
Center for Atmospheric Research, had Oliger as his dissertation advisor, as did Berger.
Similarly, the Binary Black Hole Grand Challenge group has several researchers who have
experimented with Berger’s AMR, including Parashar, Haupt, Choptiuk and Chrisochoides,
who has written a parallel AMR support library. Outside of these two groups are a few other
researchers using Berger’'s AMR, including Kohn and Quinlan, but most of the scientists who

use this strategy are connected either to the Berger-Oliger-Colella group or to the Binary

92

Black Hole group.

The primary reason for the lack of popularity of Berger’s strategy is that it is extremely
cumbersome to code and to maintain. Of the few researchers who have developed software
for Berger’s AMR, many have made a variety of application-specific simplifying assumptions
in order to streamline the coding. For example, many AMR codes allow only one or two
staggerings, typically either cell-centered, node-based or both. Also, some codes implement
Richardson truncation error estimation by making significant adjustments to the solver — as
in fact did Berger’s original code — which is unrealistic for many legacy codes, and for other
complicated codes. For example, Brandt describes a relativity solver he uses that has a loop
body of approximately 500 lines, which he notes would be cumbersome to recode, although

recoding the formal argument list and the loop bounds would be acceptable [Bra96].

Berger’s AMR is difficult to code for two primary reasons. First, this strategy presents
a very complicated data management problem, not only because of the dynamic nature of
memory usage but also because of the relationships and interactions between the various
parts. Second, the AMR algorithm itself is not only elaborate, but also very sensitive to
even the smallest incongruities. At every step in the development process, new problems
are discovered that must be addressed in a manner consistent with the rest of the AMR
implementation. The temptation to treat Berger’'s AMR as a relatively minor modification
of existing techniques — for example, traditional multigrid strategies — must be avoided,
because Berger’s strategy is significantly more complicated in both its data management and

its algorithm.

93

To make Berger’s AMR accessible to the community of researchers using structured fi-
nite difference schemes, a new approach must be developed. Requiring application scientists
to code their own AMR schemes directly is unrealistic; rather, the computational science
community requires an AMR system that manages its own data, includes all the appro-
priate algorithms and presents them in an intuitively clear manner, and imposes minimal

reinstrumentation requirements on existing codes.

94

Chapter 5

Autonomous Data Management for

Grid Hierarchies

Berger’s adaptive mesh refinement strategy presents a significant data management chal-
lenge. AMR software architectures are unlike traditional numerical approaches, which need
to manage only the solution vectors and perhaps some additional work space, typically for a
small, fixed number of static grids whose relationships are known at compile time. Instead,
AMR systems must manage not only the solution vectors for a large, dynamically changing
collection of grids, but also the relationships between the grids, the relationships between
the solution vectors and various other data items, and the relationships of the various data
items to the methods that operate on them. In addition, maximal flexibility is achieved
if the manner of describing the data items and relationships allows the data structure to

be autonomous: that is, to manage itself, rather than relying on hard-coded management

95

functions.

This aspect of Berger’s AMR strategy has been one of the primary stumbling blocks to the
increase of its popularity among computational scientists. The burdensome coding require-
ments of grid hierarchy data structures make development of general-purpose AMR systems
in scientific languages like Fortran unrealistic. Even if a system is designed in a language
that supports sophisticated data constructs, such as C, the enormous variety of structured
simulation paradigms leads to a prohibitively high amount of design and implementation

labor.

However, if an AMR system’s data management infrastructure has at its foundation a
solid body of theory, then design and implementation become not only less cumbersome but
also more intuitive. Thus, a fundamental aspect of the research for this dissertation is such
a collection of principles, which describe the nature and properties of the data structures
and their management. Over the course of the development of the software architecture
that demonstrates the research contribution of this dissertation, the underlying theoretical
basis has influenced, and been influenced by, practical design requirements. Therefore, a
description of the data management principles which give rise to generality and autonomy

is in order.

Autonomous data management consists of several aspects:

e a data structure that encapsulates data items that apply to a particular stratum of the

grid hierarchy:;

96

e attributes that describe each data item and its relationships to other data items;

e a specification that serves as a lookup table for queries about the data items and their

attributes;

e a declaration, supplied by the user, that describes the application, its data, and their

relationships;

e a set of modules, which encapsulate the data items associated with various operations

and properties;

e a software infrastructure for data management.

From these aspects, a relatively straightforward theoretical framework has been developed.

5.1 A Data Structure for Grid Hierarchies

Because Berger’s AMR strategy is a hierarchy of levels of grids, an appropriate starting point
for this discussion is to examine such a data structure (Figure 5.1). In this arrangement, an
operation on the entire hierarchy — for example, a control algorithm — has access to each
level, and an operation on a level — for example, integration — has access to each grid of
the appropriate resolution. FEncapsulating each of these strata — hierarchy, level and grid
— in individual data structures, with more broadly applicable strata encapsulating more
narrow ones, simplifies both data management and algorithms, since the contents of any of

the strata are accessible via a single argument.

97

Root Level

Grid Grid| | Grid | | Grid | | Grid Grid | | Grid
[0,0] [1,0] || [1,1] || [2,0] || [2,1] | | [3,0] || [3,1]

Figure 5.1: Basic grid hierarchy data structure

However, managing this arrangement poses a significant problem. For example, consider
the physical domain of a simulation, represented as a pair of diagonally opposite endpoints
(Zmins Ymin) and (Tmax, Ymax)- 1These endpoints apply to every level; that is, every level inherits
the endpoints from the hierarchy. Yet, this data structure would have to store the endpoints
redundantly with every level, because of the lack of a direct mechanism for the levels to
access information on the hierarchy. Alternatively, the data structure could have pointers
not only from hierarchy to level, but also from level to hierarchy:

struct hierarchy { int rank; struct level *1; }

struct level { float time; struct hierarchy *h; }
struct grid { float *solution; struct level *1; }

However, this arrangement is not ideal, because it tends to obscure the top down nature of

98

the data structure.

Regarding the issue of redundancy, in this context it is not a memory consumption issue;
rather, it is an issue of data consistency throughout the grid hierarchy. In the physical
domain example, the endpoints perhaps do not change over the duration of the simulation.
Instead, consider the physical time, which can be different at each level; for example, if level
[is at timestep i;, and level [4 1 is at timestep ri; + /2, then its time is halfway between
the times of the old solution and the new solution at level [. However, the time value is
the same for each grid on a particular level, and it changes with each integration at each
level. Thus, updating the time value after an integration is considerably simplified, and is
intrinsically self-consistent, if the time value is associated with the level and is accessible by

each grid, rather than being stored redundantly on each grid.

Therefore, instead of using the arrangement presented in Figure 5.1, consider a new
arrangement that offers a mirror image data structure, shown in Figure 5.2. In this new
arrangement, data that applies to the entire hierarchy can be declared in the structure labeled
“Hierarchy Data,” data that applies to an entire level can be declared in the structure labeled
“Level Data,” and data that applies only to a particular grid can be declared in the structure
labeled “Grid Data.” (In some sense, the “Grid Data” structure is superfluous, since the
only structure that can access it is the associated grid. However, this arrangement simplifies
both the underlying formalisms and the coded constructs, and the cost of implementation
is one pointer per grid.) Thus, the structure declaration that is presented above can be

replaced by:

99

Root Level

Grid Grid| | Grid | | Grid | | Grid Grid | | Grid
[0,0] [1,0] | | [1,1] | | [2,0] || [2,1] | | [3,0] || [3,1]
Grid Grid Grid Grid Grid Grid Grid
[0,0] [L,0] || [11] || [2,0] || [2.1] 3,01 || [3:1]
Data Data Data Data Data Data Data

Root Level
Data

Level 3
Data

Hierarchy
Data

Figure 5.2: Mirror image data structure

100

struct hierarchy_data { int rank; ... }

struct level_data { float time; ... struct hierarchy_data *hd; }

struct grid_data { float *solution; ... struct level_data *1d; }

struct grid { struct grid_data *gd; }

struct level { int grids; struct grid **g; }

struct hierarchy { int levels; struct level *x1; }

This arrangement of the strata and their data clarifies the location of various data items

in the data structure. For example, the region of physical space delimiting the domain can

be contained in the hierarchy data, the time value in the level data and the solution vectors

in the grid data. More formally,

e a data item that applies to all levels should be contained in the hierarchy data;

e a data item that applies to all grids at a particular level but that can vary from level

to level should be contained in the level data;

e a data item that applies exclusively to a specific grid should be contained in the grid

data.

Actually, the depiction of the data structure in Figure 5.2 is incomplete in two ways. The
first missing aspect is that, while each grid can access all of the relevant data, a level that
as yet has no grids cannot access the associated level data, nor can a hierarchy access the
hierarchy data if it as yet has no levels. Therefore, it is necessary for the hierarchy to have
a direct reference to the hierarchy data, and for each level to have a direct reference to the

corresponding level data (Figure 5.3):

101

Hierarchy

Root Level @ @

Grid Grid | | Grid | | Grid | | Grid Grid | | Grid
[0,0] [1,0] | | [1,1] || [2,0] | | [2,1] | || [3,0] | | [3,1]
Grid Grid Grid Grid Grid Grid Grid
[0,0] [L,0] || (1] || [2,0] || [2.1] 3,01 || [3:1]
Data Data Data Data Data Data Data
Root Level Level 1 Level 2 Level 3
Data Data Data Data
Hierarchy
Data

Figure 5.3: Mirror image data structure with additional pointers

102

struct hierarchy_data { int rank; ... }
struct level_data { float time; ... struct hierarchy_data *hd; }
struct grid_data { float *solution; ... struct level_data *1d; }
struct grid { struct grid_data *gd; }
struct level {

int grids; struct grid **g; struct level_data *1d; }
struct hierarchy {

int levels; struct level **1; struct hierarchy_data *hd; }

Second, in the current depiction, no distinction is made between data items whose values
are determined on the fly, in a manner analogous to variables, and data items whose values
are fixed at compile time, in a manner analogous to declared constants. An additional
stratum, called the fired stratum, encapsulates those data items whose values are constant
(Figure 5.4). One disadvantage of this approach is that it disrupts the mirror image nature of
the data structure, since the natural point of entry for operations on the entire data structure
is the hierarchy, rather than the fixed structure. However, this disadvantage is outweighed
by the abstraction provided in decoupling constant values from dynamically varying values,

a common feature of programming languages.

5.1.1 Scope and Extent of Data Items

Two important concepts governing this data structure are borrowed from the literature on
programming languages: scope and extent.

In this context, the scope of a data item is the portion of the data structure to which it is
applicable, and by which it can therefore be accessed. Specifically, fixed data items apply to

everything, data items on the hierarchy apply to all levels and to all grids on all levels, data

103

D Fixed >

ierarchy
Root Level
Grid Grid || Grid | | Grid | | Grid Grid | | Grid
[0,0] [1,0] | | [1,1] | | [2,0] | | [2,1] | || [3,0] | | [3,1]
Grid Grid Grid Grid Grid Grid Grid
[0,0] [L,0] || (1] || [2,0] || [2.1] 3,0 || [3:1]
Data Data Data Data Data Data Data
Root Level Level 1 Level 2 Level 3
Data Data Data Data
Hierarchy
Data
Fixed Data

Figure 5.4: Data structure with fixed stratum

104

items on a level apply to all grids on that level, and data items on a grid apply exclusively
to that grid. Thus, fixed data items have the broadest scope of the four strata, while grid
data items have the narrowest scope. Scoping in this context is static: fixed data items are
frozen, but similarly other data items do not migrate between the hierarchy, the level and

the grid, and therefore scope does not change.

The extent of a data item is the period of runtime during which it exists and is accessible.
For example, the extent of a hierarchy scalar is the entire existence of the hierarchy (though
conceivably its value might be undefined at times), whereas the extent of a work vector used
by a solver is (ideally) the duration of the call to the solver itself; that is, the work vector
should be allocated immediately before calling the solver, and deallocated immediately after

returning from the solver.

Extents fall into four categories: permanent, enduring, automatic and temporary. A
permanent data item is one that is created immediately when the structure on which it is
located is created, and is retained throughout the existence of the encapsulating structure.
For example, a solution vector is required not only throughout all integrations, but also
when the encapsulating grid is first allocated, because it is the destination of values from
the old grids it replaces, and when the grid is being replaced, because it is the source of
values on the new grids that are replacing it. An enduring data item is one whose extent is
the computational lifetime of the data structure that encapsulates it, but that is deallocated
before the encapsulating structure is replaced. Specifically, the values of an enduring data

item are not retained from instance to instance of the encapsulating data structure, nor are

105

they required for the process of retaining the values of other data items between instances.
For example, the flux correction vectors are used during all of the integrations, but are not
needed for regridding, because their values do not need to be transferred to the new grids and
do not assist in transferring other values. (In the static hierarchy and single grid cases, and in
the case of structured of fixed, hierarchy and level data, which are not replaced during a run,
the distinction between permanent and enduring is meaningless.) An automatic data item is
one that is automatically allocated immediately before a particular operation and deallocated
immediately after, as in the work vector example above. (This definition conforms to the
standard definition in the context of programming languages [KR88].) Finally, a temporary
data item is one that must be explicitly allocated and deallocated by the operation that uses

it.

5.1.2 Types

Each data item is of a specific type; however, these types can be fairly elaborate. Thus,
distinguishing between the type of the data item’s elements and the overall structure of the
data item is crucial. An element type is a primitive data type, such as a boolean, integer,
floating point, and so on, or a nearly primitive data type, such as a string, a point in
physical or computational space, a region defined by a pair of diagonally opposite endpoints,
and so on. A parameter type is the gross structure of a data type. Examples include scalars,
contiguous lists, arrays, linked structures, discretized fields, and so on. Thus, the overall

data type of a data item is the combination of its element type and its parameter type.

106

More specific than its data type is a data item’s stratiform type, which comprises not only
its element and parameter types but also the stratum that encapsulates it. For example,
the physical time values of a solution are not merely a list of floating point values — one
for each time level of the difference scheme — but more specifically a list of floating point

values on a level.

A related issue is the distinction between a data item and an instance of the data item.
For example, the list of physical time values is a data item that is encapsulated in the level
data structure, but the list of physical time values for a specific level is an instance of the
data item. And in the case of a dynamically evolving grid hierarchy, a particular solution
vector encapsulated in the grid data structure is the data item, but the instance of the data
item is that solution vector on a particular grid, which may well be replaced as the grid

hierarchy evolves.

A method! is a procedure that applies to a particular structure or data item. In the data
management system under discussion, methods are treated in essentially the same manner
as are data items; specifically, methods are another parameter type. The advantage of this
approach is that it simplifies both the conceptualization and the implementation of the

system.

By definition, all methods are implicitly permanent, although the actual procedures to

which they refer — that is, their values — may change during a run. Also, the element type

!This term is borrowed from the object oriented language literature; its use here is not meant to imply a
strictly object oriented implementation.

107

associated with a method is the scalar type that the method returns, or a void for a method

that does not return a value.

5.2 Attributes

Most data items have attributes, which describe aspects that can vary from instance to
instance of their type. For example, a list of floating point values has a length attribute
associated with it, a solution vector has a staggering, and so on.

Data management is simplified if each piece of data has its attributes conveniently avail-
able. There are two means of achieving this goal: either the attributes can be explicitly
included by encapsulating them with the data item, or they can be implicit, either by being
hard-coded — for example, as macros or declared constants — or by pointer references. This
last approach has the benefit of generality; that is, the fewer pieces of information that are
hard-coded, the less recompiling is necessary in order to change them, and therefore the
more quickly and conveniently they can be altered.

The list example appears fairly trivial. But consider the case in which there are two
arrays of the same size, where the length of the rows of the arrays can vary (Figure 5.5).
In this case, changing the length of the arrays is significantly more complicated if it must
be explicitly changed for both instances, whereas changing just the one instance and giving
both arrays access to the length list simplifies encapsulation. Thus, new instances of these

arrays can now be created simply by calling a constructor with the type and identifier of

108

4| Number of rows

List of columns for each row

51 3| 7|1

Array 1 Array 2

Figure 5.5: Arrays and their shared attributes

each; the constructor can then access the attributes of the data item to be created, with

complete confidence that these values will be the same as for other instances of this item.

5.2.1 Attribute Categories

Grid hierarchy attributes come in two pairs of complementary categories: structural and
functional, and referential and reciprocal.

Structural attributes describe the computational shape of a data item. In the above
example, an array whose rows may have varying lengths has two structural attributes: the
number of rows, and the list of the number of columns in each row. A solution vector, on
the other hand, has many structural attributes, including rank, staggering, stencil, number

of time levels, and number of loci along each axis. In fact, this last attribute will depend on

109

other attributes for its value; for example, the solution vector for a node-centered variable
will have one more node along each axis than the number of cells in the grid, and will also
have extra nodes for the ghost boundary cells specified by its stencil. Informally, it may be
helpful to consider structural attributes to be those attributes whose values must be known
for the data item to be allocated. (In practice, there are structural attributes that do not
exhibit this property, but it may be helpful to think of them this way for the moment.)

Functional attributes describe the non-structural roles that various other data items play
for the attributing data item. Both data and methods can be functional attributes; that
is, there are functional data attributes and functional method attributes. For example, a
solution vector may have associated with it another data item in which its flux values are
stored, in anticipation of the flux correction step. Similarly, it may have also associated with
it an initialization method, so that when it is created it can immediately be set to the proper
value.

Referential attributes are those that connect an instance of a data item to instances of
other data items with which it has a specific relationship. The advantage that referential
attributes provide is that they associate data items in a manner that promotes generality. In
the correction vector example, the reference from the solution vector to the correction vector
makes possible a general-purpose correction routine, because the identity of the solution
vector that is to be corrected implicitly identifies the appropriate correction vector as well.

Reciprocal attributes are returns of referential attributes. That is, if data item ¢ refers

to data item j for attribute a, then data item j reciprocates to data item ¢ for attribute a.

110

Every referential attribute has a reciprocal, and thus each referent knows which data items

refer to it, and for which attributes.

A crucial distinction between reciprocal and referential attributes is that reciprocal at-
tributes do not subsume references; that is, no memory address is associated with a reciprocal
attribute. Instead, reciprocal attributes are encoded information that indicate to a data item
what role it plays with respect to other data items. For example, if a solution vector refers to
a stencil item as its stencil, then the stencil reciprocates in its knowledge that instances of the
solution vector refer to it for stencil information. Thus, the information about the relation-
ship between the two data items is bidirectional, but the information about the relationship

between instances of the two data items is unidirectional.

Reciprocal attributes provide an important advantage in promoting autonomy, because
they allow decisions to be predicated on maximal information with minimal research. Con-
sider the time information about a solution vector. There are many facets to time informa-
tion, including the number of time levels, the time level relative to the time interval — for
example, a centered time difference scheme has three time levels whose relative values are

L u™ and u*t! — the physical time for each time level, the

-1, 0 and 1, corresponding to u™~
timestep index for each time level — that is, the iteration number at that level — and so on,
as well as indices indicating which time level is the “old” timestep and which is the “new”
timestep. Rather than requiring a separate data item — and a separate attribute — for

each of these categories of time information, a simpler solution is to require only one of them

to be explicitly declared as a data item, and to attach the others as attributes. However,

111

because the number of time levels can vary from difference scheme to difference scheme —
for example, forward time differencing would have relative time levels 0 and 1 — the other
time attributes must be explicitly allocated, according to the number of time levels (and
thus elements) of the relative time level list. Thus, each relative time level list has associated
with it (as attributes) several other lists, some of them floating point (for example, physical
time) and some of them fixed point (for example, timestep index), of the same length as
the relative time level list. However, allocating such lists for all lists of the appropriate type
would be extremely unwise, since another list might instead be, for example, a data item
for a set of particles, and might therefore be thousands or even millions of elements long,
and so the memory waste would be outrageous. Therefore, an important prerequisite, before
allocating such attribute lists, is the determination that they are necessary, in the sense that
the data item is actually used as time information by some other data item. A reciprocal at-
tribute provides precisely that information. That is, if the set of data items that consider the
list to be time information is nonempty, then the list is time information by definition, and
therefore its time attribute lists should be allocated; conversely, if the list’s time information
reciprocal attribute set is empty, then by definition it is not time information, and therefore

time attribute lists should not be allocated, since they would be completely wasted.

A few final points about the two pairs of attribute categories will clarify these concepts.
First, some structural attributes are also referential. In the array example, the list of the
number of columns in each row can itself be a data item; thus, its structural role is imple-

mented by its reference. In principle, the list can have its own intrinsic meaning that is

112

separate from its role in the computational shape of the array. In contrast, all functional

attributes are referential. Also, no attribute is simultaneously structural and functional.

5.2.2 Rules for Referential Attributes

Referential attributes are subject to a few simple rules. The first rule addresses the issue of

scoping.

Rule of Monotonic Scoping: a data item can reference other data items in strata

of equivalent or broader scope only.

Thus, a fixed data item can reference only other fixed data items, a hierarchy data item can
reference fixed and hierarchy data items, but it cannot reference level or grid data items; a
level data item can reference fixed and hierarchy data items as well as level data items; a grid
data item can reference any data items. (This principle is illustrated in Figure 5.4, wherein
all pointers are directed downward. Some pointers, such as pointers between siblings, are
lateral, but no pointers are directed upward.) This rule recognizes an important practical
aspect of the data structure: that the fixed data must be allocated before the hierarchy data,
the hierarchy data before the level data, and the level data before the grid data, in order
to give succeeding allocations something to reference. Here a clarification is in order: the
scope of a data item includes other structures of the same stratum; for example, if the scope
of a data item is the grid, then it can reference data items on other grids, although most

references will be local to the grid that contains the data item. More importantly, a data

113

item whose scope includes the level can reference data items on other levels as well as on its
own, a situation that is more common than the grid case.

By contrast, there is no analogous rule about the extents of referential attributes. Thus,
for example, a permanent data item like a solution vector can reference an enduring data
item like a correction vector, and a temporary array can reference a permanent list as its
row length vector.

The second rule governing referential attributes is a rule applying to those attributes that

are simultaneously referential and structural.

Rule of Monotonic Complexity: an attribute that is both referential and structural
can refer only to a data item whose data type is less complex than that of the

referring data item.

In the array example, a scalar is less complex than a list, and therefore the list of row lengths
can refer to a scalar for its length; similarly a list is less complex than an array, and so the
array can refer to the list as its row length vector, and by extension to the scalar for the
length of its row length vector.

With data types defined over a space, for example solution vectors and correction interface
vectors, the notion of complexity is less obvious. To clarify, the complexity of a spatial data
type is defined as the minimum overall size it can take on relative to the region of space
on which it is defined. Thus, a solution vector covers the entire grid on which it is defined,

while a correction interface vector covers only the surface of the grid — for example, in

114

A a: attribute b;

N

attribute a; b: attribute c;

N

c: attribute d;

Figure 5.6: Cycle of structural attribute references

three dimensions an interface comprises the six faces of the rectangular prism on which the
grid is defined, and each face of the interface vector has a thickness of a single locus. In
addition, a spatiotemporal type is more complex than the corresponding time-independent
type, because the spatiotemporal type covers multiple time levels, while the spatial type
covers only one; that is, the spatiotemporal type covers more of spacetime than the time-
independent type. Also, a spatial parameter type is by definition more complex than a
structured type; therefore, for example, a solution vector can reference a stencil as part of

determining its size and shape.

The primary motivation for the latter rule is purely practical: the order of data item
creation must be fixed and well-defined, because otherwise reference cycles can form (Figure
5.6). Reference cycles are unresolvable; that is, no data item in the cycle can be created until
its structural attributes have been resolved, and its structural attributes cannot be resolved

if their referents, or the data items their referents depend on, cannot be created.

115

5.2.3 Attribute Appendices

Each data item has associated with it an attribute appendiz, which is an attached list of
some of the attributes of the data item. The choice of which attributes to store explicitly
in the appendix, and which to access implicitly or to derive from other attributes, is purely
an implementation decision, and is driven by the need to balance memory consumption
against processing time and coding convenience. Any attribute that is explicitly stored in
the appendix consumes additional memory space; if the application is memory-bound, or if
the fixed size of certain data structures exceeds the anticipated sizes of the grids, then it
may be more appropriate to put fewer attributes in the appendix, and to decode the rest on
the fly. On the other hand, any attribute query or derivation requires additional processing
time, which may be inappropriate if the application is CPU-bound. However, the amount of
time associated with obtaining attribute values during the run typically is low compared to

more significant operations, so the waste is likely to be miniscule.

Another concern in making these decisions is the construction of wrappers around ex-
isting, legacy-style code fragments. The more attributes that are precomputed and stored
in appendices, the less extra instrumentation is required within a wrapper. Thus, a data
management system that is motivated by the desire to minimize the amount of additional
coding required by the application scientist may be better served by a larger, more complete
attribute appendix. On the other hand, this concern could be minimized by providing a

means of automatically generating the wrappers.

116

5.3 The Specification

The last missing piece to the grid hierarchy data structure is the specification of the attributes
of the various data items (Figure 5.7). This structure contains all the information about the
various attributes as they apply to each data item, which can then be imposed on each
instance of each data item. For example, the specification has entries asserting which list
describes the rows of a particular array, which stencil applies to a particular solution vector,
and so on.

In essence, the specification acts like an enormous, five-dimensional lookup table, with
the five dimensions being the stratum, the element type, the parameter type, the parameter
identifier of the given stratiform type, and the attribute. (Obviously, it would be unwise to
implement the specification this way, because expanding the specification by even a single
new attribute could potentially add thousands of new table entries.) The lookup table is

sparse, because

e not every combination of stratum/element type/parameter type is a valid stratiform

type,
e not every valid stratiform type will be used by an application, and
e cach valid stratiform type requires only a subset of the set of possible attributes.

For example, a real solution vector on a grid may require rank, staggering, stencil and so on,

but will not require a length vector.

117

ierarchy

H/—\ Fixed >

Root Level
Grid Grid || Grid | | Grid | | Grid Grid | | Grid
[0,0] [1,0] | | [1,1] | | [2,0] | | [2,1] | || [3,0] | | [3,1]
Grid Grid Grid Grid Grid Grid Grid
[0,0] [L,0] || (1] || [2,0] || [2.1] 3,0 || [3:1]
Data Data Data Data Data Data Data
Root Level Level 1 Level 2 Level 3
Data Data Data Data
Hierarchy
Data
Fixed Data
T
Specification

Figure 5.7: Grid hierarchy data structure with specification
118

For each attribute that cannot be derived trivially from other attributes, the specification
contains either the value or an encoded generic reference; specifically, it contains an encoded
description of the stratum, element type, parameter type and parameter identifier, which
the data management system can translate into an actual memory address for each instance
of the data item. The data management system can query the specification at any time,
in order to create, manipulate or delete a data item or structure, a capability that provides

significant flexibility not only to data management activities but also to the AMR algorithms.

For purposes of scoping, the specification can be considered simply as another stratum
of the system; in fact, it has the broadest scope, being accessible by all other strata but
having access to none of them. Naturally, its extent is permanent; in fact, it must be
created first and deleted last, because all of the data items on all of the other structures
depend on it for determining their attributes. In fact, by encapsulating the description of
the data and methods, the autonomic nature of the data management is decoupled from
the compiler, so that different collections of data for different applications need not require
complete recompilation of the data management software.

However, it is not appropriate to consider queries to the specification as constituting
references, because the queries do not require knowledge of particular memory addresses
on the specification in order to obtain appropriate results. Thus, while some attributes are
both structural and referential, for example the row length vector of an array, there are also
some attributes that are exclusively structural, for example the rank of a solution vector.

Those that are exclusively referential — for example, the correction vector associated with

119

a solution vector — are, of course, functional attributes.

5.4 The Declaration

If the specification is a description of the data items and their attributes in a form that
the data management system can understand, then the declaration is the same description
in a form that the user can understand. Specifically, to create a new application for the
data management system, the user must declare the application’s data and methods, and
the relationships between them.

Thus, the data management system requires a declaration language, and a parser to
convert the declaration into an encoding that is appropriate for a specification. The syntax
of the declaration language is arbitrary; that is, any number of approaches will produce valid
declarations. But the kinds of information that the declaration language must be able to
express is more well defined.

Obviously, the first thing that the declaration language needs is a way to declare a data

item. In C- or Pascal-like syntax, this might look like:

Reallist time_level;

However, this declaration is insufficient, because it doesn’t indicate

e the stratum on which the data item is located;

e the extent;

120

e the structural attributes.

Therefore, a more accurate depiction would look like:

Reallist time_level:
Level, Permanent,
Elements number_of_time_levels;
Integer number_of_time_levels:
Hierarchy.

A data item requires one more piece of information before it can be considered useful: an

initial value. Thus:

Reallist time_level:
Level, Permanent,
Elements number_of_time_levels,
Value 0 1;

Integer number_of_time_levels:
Hierarchy,
Value 2.

So in this case, number_of_time_levelsis an integer scalar whose value is 2, and time_level

is a list of real (floating point) values whose length is expressed by number_of_time_levels

and whose values are 0 and 1; for example, time_level might refer to a forward time finite

difference scheme of the form u"*! = Q(u").
In addition to structural attributes, a declaration may need to include functional at-

tributes as well. For example, in flux correction a solution vector refers to the appropriate

correction vector:

121

SolutionVector density_vector:
Grid, Permanent, ... ,
Correction density_correction_vector;
Surface density_correction_vector:
Grid, Enduring,

In this example, the relationship between the two vectors is explicitly declared via the key-
word Correction.

Similarly, a data item may have associated with it functional methods:

SolutionVector density_vector:
Initialize shock_tube_initialization_method;
VoidMethod shock_tube_initialization_method:
Hierarchy,

Value Grid_shock_tube_initialization;
Void Grid_shock_tube_initialization(): Grid.

In this example, the method shock_tube_initialization_method has as its value a pointer
to the function Grid_shock_tube_initialization, and is referred to by density_vector
for the purpose of initialization. Thus, at runtime, when density_vector is to be initialized,
it accesses shock_tube_initialization_method and executes the function that its contents
point to, Grid_shock_tube_initialization (Figure 5.8).

In the tradeoff between memory consumption and computation time, the full decoding
process adds nothing to the memory cost of the attribute, but takes more time to interpret;
decoding all attribute references when a data item is created and storing the memory ad-
dresses in the attribute appendix saves time, but costs the space of the extra pointers and

values.

122

. lookug o .
density Specification

encoded decode
reference
reference
dereference
function ezecute nitialize
_—
pointer density

Figure 5.8: Initialization via attribute lookup

5.5 Modules

A module is a logically affiliated collection of data items and a (possibly empty) operation
with which they are associated. For example, the data appropriate for a solver — the stencil,
the time levels, the temporary work vectors and so on — have a logical relationship to the
solver and perhaps to each other. The data items of a module can be located on multiple
strata of the grid hierarchy, rather than being confined to the stratum to which the operation
applies.

To illustrate, consider an example solver (Figure 5.9). Here, the stencil and time levels
for the solver are implicitly attached to the solver itself, as is the work vector. Further-
more, the work vector is declared Automatic. In this context, the meaning of an auto-
matic extent is more clear: an automatic data item is created immediately before call-

ing the operation of the item’s module, and it is deleted immediately after returning from

123

Solver Grid_piecewise_parabolic_method();
Stencil ppm_stencil:
Hierarchy;
List ppm_time_level:
Level;
Integer ppm_time_levels:
Hierarchy;

SolutionVector ppm_workspace:
Grid, Automatic.

Figure 5.9: Example solver module

Void Grid_generic_solve(grid) {
Grid_automatic_allocate(

grid, PIECEWISE_PARABOLIC_METHOD_MODULE) ;
Grid_piecewise_parabolic_method(grid);
Grid_automatic_deallocate(

grid, PIECEWISE_PARABOLIC_METHOD_MODULE); }

Figure 5.10: Stub for allocating and deallocating automatic data items

that operation. Thus, for a call to Grid_piecewise_parabolic_method to advance a par-
ticular grid, ppm_workspace is allocated immediately before the actual call, and as soon

as Grid_piecewise_parabolic_method terminates, ppm_workspace is deallocated (Figure

5.10).

Modules contribute two important data management capabilities, activation and varia-

tion.

Activation refers to the ability of a module to be active or inactive; that is, the module

can be declared “on” or “off,” and in the latter case none of its data items will be created

124

(except, of course, scalars and methods, which are not allocated as such). This capability
is helpful in the case of large, module-specific data items that are encapsulated in modules
that are not currently in use. For example, a solver module might include a large, enduring
work area; if the solver were not going to be used in a particular experiment, that storage
space would be wasted. However, if the module is inactive, the work area is guaranteed never

allocated.

Variation is the property that certain attributes change according to which of the dec-
laration’s modules are in use. For example, consider an application that has two solvers,
one with a five point stencil and the other with a seven point stencil, and suppose that the
application scientist wishes access to both solvers at runtime, perhaps deciding to change
solvers at a particular level during a regridding. In this case, the notion of the stencil of a
solution vector is not fixed: the solution vectors that are on the levels that use the lower
order solver have fewer ghost boundary zones, compared to those on the levels that use
the higher order solver. Thus, a variform attribute is one that can take on any of several
different values depending on which of a set of modules is currently in use in the context
most directly associated with the attribute’s data item. For example, consider a variform
referential attribute whose referent is in a module that applies to a level. The attribute
refers to the instance of the referent data item on the same level as the attribute’s data item,
unless explicitly declared otherwise.

Variation and activation combine to produce additional utility, because an inactive mod-

ule will not contribute its data items as potential attribute referents of a variform attribute.

125

Returning to the multiple solver example, if both the lower order and higher order solvers are
active, then the data management system must assume the worst case when refining, that
the levels finer than the level about to be regridded might employ the higher order solver,
regardless of which solver is used by the level to be regridded, and that therefore the new
grids must be expanded sufficiently to cover the maximal possible stencil. This effect can
produce significant waste in some cases. For example, in a case of refinement by a factor of
two, an 8 X 8 x 8 grid with a buffer region of one cell in each direction must be expanded by
two zones to cover a seven point stencil, but by only one zone to cover a five point stencil.
The expanded grid in the former case, including its own buffer and ghost zones and covering
finer ghost boundary zones, is 18 x 18 x 18, for 5832 cells total, and in the latter case is
16 x 16 x 16, for only 4096 cells total, so forcing all grids to assume that finer levels can use
a seven point stencil imposes a significant waste, over 40% in this example. In fact, even in
the case of a 64 x 64 x 64 grid, the waste would be over 8%. Thus, combining activation
and variation provides sufficient flexibility to reduce overhead and improve performance in

many cases.

While some modules apply only in certain circumstances, others always apply; these
are called generic modules, and typically they have no operation associated with them.
For example, all clustering algorithms must create a list of cluster regions and have such
clustering arguments as minimum efficiency and maximum cluster size. Therefore, a useful
module is one that declares these data items, since then they need not be declared repeatedly

if there are multiple clustering algorithms spread out among various clustering modules.

126

5.6 Data Management

The declaration and the data structure lead naturally to a very simple data management
paradigm, which consists of three basic operations: creation, deletion and execution. All
three of these operations are split into suboperations, but among them they constitute the
entire set of tasks required of data management. These same operations are performed on
individual data items, on the data structures associated with the strata, and on the grid
hierarchy as a whole — though to some extent the last case is simply the result of the second

case.

5.6.1 Management of Data Items

Creation and deletion operate at several levels of complexity. The simplest is the creation or
deletion of a single instance of a single data item, for example a particular solution vector.

To create such an instance, the data management system
e creates all attributes;
o allocates the instance of the data item according to its structural attributes;
o initializes the instance of the data item.

For example, consider the creation of an instance of a solution vector on a grid. First, its
attributes — staggering, stencil, number of loci along each axis, number of time levels and

so on — are initialized. Next, based on this information, the solution vector is allocated.

127

Finally, the solution vector is initialized, most likely by calling the method referred to by its

initialization attribute.

Deletion of a data item operates similarly, although it is a bit less elaborate, because
the attributes have already been initialized at creation. Deletion includes an operation
similar to initialization, called finalization, which is executed immediately before the data
item is deallocated, typically to transfer some or all of the data item’s values to a more
permanent location. For example, consider flux vectors. The solver for a flux-conservative
difference scheme must produce flux values for the interfaces between a grid and its parents
and children. It is generally not convenient to use the correction vectors directly for flux
storage, since the complexity of the extra instrumentation inside the solver may be off-
putting for the application scientist, and also because some of the flux correction values,
namely those on the interface of the grid being advanced, are immediately added to the
running sum for the interface of the grid. Therefore, the flux vectors may be automatic
with respect to the solver, and before they are deleted, their values must be stored in
the appropriate correction vectors. The finalization method automatically performs the
appropriate data transfers, without having to code the transfers explicitly into either the
solver, the wrapper around the solver, or the integrator; that is, the data transfer can be
performed by a specialized subroutine which is declared to be the finalization routine for
the flux vectors. Thus, the flux vectors can be automatic with respect to the solver, and
so they need not be explicitly created and deleted, since the data management system will

automatically create and delete them before and after calling the solver, respectively, and

128

will automatically call the flux transfer method immediately before deletion, to finalize the
flux vectors. In addition, this approach promotes generality and code reuse: attributes of
the flux vectors implicitly identify the associated solution vector that the fluxes will correct,
and the solution vector’s correction data attribute identifies its correction vectors, so the flux
vectors can easily trace the correction vectors into which their fluxes are to be transferred,
without needing to know any application-specific information about any of these data items.

Finally, execution with respect to a data item specifically denotes execution of its func-
tional method attributes, including initialization, injection, projection, input, output and so
on. The interchangeability of these operations promotes flexibility and generality within the

data management framework.

5.6.2 Management of Strata

The management of strata is as straightforward as the management of data items, and again
is simply a matter of creation, deletion and execution. Creation of an instance of a stratum
is a four-step process. First, the “stratum data” structure is allocated. Next, the framework
for storing data items and their attribute appendices is allocated and cleared; for example,
the framework for floating point solution vectors is a list of pointers to solution vectors, all of
which are initially null. Third, the “stratum” structure is allocated, and appropriate pointers
are set to link it to the “stratum data” structure. Lastly, the permanent data items on the
stratum are created. As for deletion, the process is the same in reverse order, except that all

data items are deleted before the stratum framework can be eliminated. Finally, execution

129

on a stratum denotes the execution of a module method that applies to that stratum; for

example, executing the solver on a grid.

5.6.3 Management of the Grid Hierarchy

The management of the grid hierarchy as a whole is a combination of the management of
the various strata. To create a grid hierarchy, the strata are created in order from broadest
to narrowest scope. Thus, the specification is created first, then the fixed structure, then
the hierarchy, then all of the levels and finally one or more grids. In the general case, only
the grids at the root level are created, either directly from a list of root level subdomains, or
by deriving the domain of a single root level grid from the overall domain. (In fact, an ideal
implementation checks for a list of root level subdomains, and if it exists, creates appropriate
grids; if there is no such list, it creates the default, full domain grid.) Deletion is performed
in the same manner as creation, but in reverse order. There is no execution of the grid
hierarchy as a whole; rather, operations that apply to the entire grid hierarchy are executed

on the hierarchy stratum.

5.7 Summary

The design and implementation of a general-purpose AMR system requires a solid theoretical
basis, not only to formalize the constructs that constitute the system, but also to simplify

the description and development of its components, not only the data structures but also the

130

means by which they are managed. Thus, the conceptual constructs laid out in this chapter
are both the result of and an aid to designing, using and understanding the implementation
of Berger’'s AMR strategy that constitutes the balance of the research presented in this

dissertation.

These concepts were not wholly derived prior to implementation. Rather, they arose
naturally as the design evolved. Originally, the design required that the application scientist
code aspects of the data structure by hand, in the language of the implementation. However,
it rapidly became clear that such an approach had many disadvantages, and no obvious
advantages beyond simplifying the implementation of the system — the opposite of the
purpose of the system, which is to simplify the implementation of applications. Thus, the
need for an autonomous, easily described, extremely flexible data structure and management
framework became increasingly urgent. The theoretical framework, and the principles it
embodies, were to some extent implicit in the design decisions, both affecting how the data
management was implemented and being affected by the development decisions that necessity
imposed. Thus, the theory underlying this design evolved progressively, in concert with the

implementation.

Over the course of these investigations, the advantages of this autonomous approach to
data management have become increasingly clear. The ability to declare an almost limitless
variety of data, methods, and — most importantly — relationships between them, has
provided a flexibility and an ease of application design that are otherwise unknown in the

AMR literature. Thus, the ideas laid out in this chapter provide an excellent foundation for

131

the implementation of Berger’s AMR strategy that encompasses the practical benefit of this

dissertation.

132

Chapter 6

HAMR: A Software Framework for
Hierarchical Adaptive Mesh

Refinement

The research for this dissertation includes an implementation of the concepts examined,
which is called the Hierarchical Adaptive Mesh Refinement (HAMR) system. HAMR is a
software architecture for building adaptive mesh refinement applications on grid hierarchies.
It is general-purpose and flexible, combining the autonomous data management concepts
described in Chapter 5 with Berger’'s AMR stragegy, described in Chapter 4. Unlike other
implementations of AMR, HAMR does not require extensive programming in a high-level
language, burdensome modifications to existing solvers, or detailed knowledge of the com-

putational platform on which the simulation executes. Rather, HAMR largely decouples the

133

simulation kernel from the AMR strategy, the data management, and a variety of implemen-

tation details.

HAMR consists of four components (Figure 6.1): a set of type definitions, a low-level
function library, an autonomous data structure, and a set of commonly-used algorithms
for implementing Berger’s adaptive mesh refinement strategy. Each of these components
includes a set of predefined standard entries, and also leaves room for application-specific
entries that can be supplied by the user. In addition to these components, each application

requires a set of algorithms that define and implement it.

HAMR is implemented in the C language! and easily allows incorporation of Fortran
subroutines such as solvers, initializations and so on.

Underlying the design philosophy of HAMR is a single, clear goal: to simplify the pro-
cess by which an application scientist can convert a traditional, nonadaptive simulation to
an adaptive version that employs Berger’s strategy. Fach of the components of HAMR ad-
dresses this goal in its own way. The set of data types provides the flexibility that allows a
wide variety of applications, which may have diverse data requirements, to be incorporated
with minimal user coding. The function library provides the operational underpinnings from
which sophisticated management and AMR algorithms can be constructed, while encapsu-

lating those operations in a manner which requires little or no adjustment to address specific

'A C++ implementation would also have been appropriate; the advantage of C is that it comes bundled
with virtually every platform, which simplifies portability. Some C++ implementations of Berger’'s AMR
have experienced difficulties because appropriate C4++ compilers are unavailable on some platforms [Bal96]
or because of insufficient optimization power in existing C++ compilers [Bry96b].

134

HAMR Data Types

Function Library Data Structure Algorithms
Standard Standard
Reductions Control
Arithmetic/Logical Regridding
Interpolators Truncation Error
Mapping Clustering
1/0 Collection
Injection
Projection
Integration
Extrapolation
Standard
Data and Method
Declarations
i | e 1
: Application-specific Application-specific Application-specific :
L Reductions Data and Method Control i
: Arithmetic/Logical Declarations Clustering :
: Interpolators Regridding :
L Mapping Selection Criteria i
: I/0 Extrapolation :
5 3
: Application :
i 5
: Initializers Solvers :
Pl |
5 3
: User-defined |

Figure 6.1: Components of the HAMR architecture

135

situations. The data structure and its management decouple the declaration of the data and
methods from their implementation, so that all data management operations can be fully
distinct from the adaptive techniques. Finally, the AMR algorithms provide the functional-
ity required for converting an application to adaptivity, without requiring the researcher to

learn — let alone to implement — the subtle complexities of Berger’s strategy.

6.1 Data Types

HAMR provides a variety of element and parameter types, to promote maximal flexibility for
applications. While a typical application will use only a small fraction of the total collection
of available type combinations, at various stages HAMR utilizes almost every element type

and almost every parameter type.

6.1.1 Element Types

HAMR has several element types (Figure 6.1). The Void type is empty; its purpose is to
indicate a method that returns no value, in a manner analogous to a Fortran subroutine or a
Pascal procedure. As for the primitive data types — Boolean, Integer, Index, Character,
String and Real®? — their purposes are intuitively clear, and all but Boolean and Index

correspond directly to C/C++ predefined types. The other element types fall into two

ZAlthough Table 6.1 lists Real as corresponding to the C type float, a Real can be double instead, or
long double on platforms supporting that type. Similarly, Integer and Index types can in principle be
char, short int, int, long int, long long int and so on.

136

Element Type Description C type Fortran type
Void no value void

Boolean true/false char integerx*1
Integer int integer
Index nonnegative int integer
Real float real
Character char character
String C-style (null terminated) | char *
IntegerVector | IntegerList int *

IndexPoint IndexList int *

RealVector Reallist float *

RealPoint Reallist float *
IntegerStencil | IntegerArray int *x*

IndexRegion IndexArray int *x*

RealRegion RealArray float *x*

Table 6.1: HAMR element types

categories, dimensional and extreme.

Dimensional element types — IntegerVector, IndexPoint, RealVector and RealPoint
— are short lists, typically of length d in a d-dimensional domain, that take on the roles
indicated by their names. Thus, IntegerVector and RealVector correspond to the mathe-
matical definition of a vector, and IndexPoint and RealPoint correspond to the mathemat-
ical definition of a point. Typically, the real types correspond to physical space, while the
integer types correspond to computational space. For example, the dimensions of a region
in physical space are indicated by a RealVector, while a single index in a three-dimensional
computational domain is indicated by an IndexPoint.

The extreme element types — IntegerStencil, IndexRegion and RealRegion — are

small arrays, one of whose indices denotes an axis and the other of which denotes an extreme,

137

specifically minimum or maximum. Data items whose element type is IntegerStencil are
indexed as stencil[axis][extreme]. Specifically, an IntegerStencil is a set of d 2-
vectors, each of which describes the increments around a center point along a particular
axis; for example, the IntegerStencil for a five-point centered space difference scheme
would have values —2 and 2 along each axis. A Region, on the other hand, is indexed
as region[extreme] [axis]; that is, a Region denotes a pair of diagonally opposite end-
points in either physical or computational space. For example, if a grid has endpoints
(Zmins Yminy Zmin) aNd (Zmax, Ymax, Zmax), then region [MINIMUM] will contain (#min, Ymins Zmin)

and region[MAXIMUM] will contain (#max, Ymaxs Zmax)-

6.1.2 Parameter Types

HAMR’s parameter types are divided into four categories: structured, dimensional, spatial
and method.

A structured parameter type — for example, a scalar, a list, an array — is a type whose
computational shape must be explicitly expressed by its attributes (Table 6.2, depicted in
Figure 6.3). Specifically, the levels of complexity of structured types are Single, List,
Array, ArraylList, ArrayArray and Queue. Arrays, ArrayLists and ArrayArrays come in
two varieties, those having varying dimensions and those having fixed dimensions; the latter
are called Boxes. The appropriate element types for structured parameter types span all of
HAMR’s element types except Void.

As can be seen in Figure 6.3, structured types are implemented contiguously; that is,

138

Parameter Type | Description Example
Single scalar or single instance dimension; filename
of an element type
List one-dimensional contiguous list relative time value
Array two-dimensional array with boundary region per grid
varying columns per row for determining parents
ArrayBox two-dimensional array with flags for which
fixed columns per row boundaries reflect
ArraylList three-dimensional array
(list of two-dimensional arrays)
ArrayListBox | three-dimensional array grid’s parent regions
with fixed dimensions
ArrayArray four-dimensional array
(array of two-dimensional arrays)
ArrayArrayBox | four-dimensional array
with fixed dimensions
Queue FIFO linked list list of initial root level grids

Table 6.2: Structured parameter types

arrayarraybox[arraylistnum] [arraynum] [1istnum] [eltnum]

(a) sequential dereference

x**arrayarraybox[((arraylistnum * arrays_per_arraylist +
arraynum) * lists_per_array +
listnum) * elements_per_list + eltnum]

(b) contiguous index

Figure 6.2: Indexing in structured parameter types

139

Single

List

Array

ArrayListBox

Queue

Figure 6.3: Structured parameter types

140

a List is contiguous, an Array is a contiguous list that is delimited by a contiguous list
of pointers to List, an ArrayList is a contiguous list that is delimited by a contiguous
list of pointers to List that in turn is delimited by a contiguous list of pointers to Array,
and so on. (The exception is the Queue, which is a linked first in/first out structure. Also,
in the case of String structures, the Strings themselves are not contiguous, though the
structure of pointers is.) Thus, each element of a structured type can be accessed in two
ways, either by a series of pointer dereferences, or by dereferences on the outer pointer lists
and an index on the innermost, contiguous list (Figure 6.2). This seemingly redundant
approach provides both the semantic power associated with Fortran-like indexing — for
example, arrayarraybox(eltnum,listnum,arraynum,arraylistnum) — and the kinds of
data locality optimizations associated with contiguous memory blocks. Specifically, a lone
reference 1s most conveniently expressed as a sequential dereference, while a loop over a
large portion of the array can be most effectively optimized if expressed as an index into the

innermost, contiguous block.

A dimensional parameter type is one that has a set of values along each axis of the domain.
Currently, HAMR offers two different dimensional parameter types: AxisDescription and
AxisContribution. An AxisDescription (Figure 6.4) is simply a list of values along each
axis; for example, the positions of the cell centers. An AxisDescription is contiguous, and
in fact is implemented as an Array: the number of lists is the dimension of the domain,
and the elements for each list are the number of cells or nodes along each axis, depending

on the axis staggering. The appropriate element types for AxisDescriptions are Boolean,

141

AxisDescription

-

T

Note: the axis lists are implemented as a contiguous list.

Figure 6.4: AxisDescription

Integer, Index and Real.

An AxisContribution (Figure 6.5) is a bit more complicated. It is, in fact, a program-

ming convenience for certain kinds of interpolators, specifically interpolators of the form

ul(ul_l, 1y ey 8q) = Finterp(Foy (21), ..o, Fu (2a), Fl(ul_l), ...Fk(ul_l))

that operate in orthogonal coordinate systems. In this case, the functions F,, are time-
invariant, and are defined over the entire computational domain on each level. Therefore,
these functions can be precomputed and stored when the level is created, thus saving comput-
ing time but occupying minimal storage space, specifically O(n) for an O(n?) computational

domain. The AxisContribution is the storage space for these precomputed values. Because

142

1—1
C
e .
1
|
I 1+1
1—1
N
0
d 1
AxisContribution e
1+1
—=
L=
—=
—=

Figure 6.5: AxisContribution

143

Parameter Type Description Example

SpaceParameterSet set of time-independent selection flags
spatial vectors

SurfaceParameterSet | set of time-independent correction vectors
spatial vector surfaces

MaximalParameterSet | set of time-independent work space for
(d — k)-dimensional direction sweep
spatial vectors of methods
maximal size, 1 < k < d

SpacetimeVariableSet | set of time-dependent solution
spatial vectors

SurfaceVariableSet set of time-dependent parental boundary
spatial vector surfaces vectors

MaximalVariableSet set of time-dependent

(d — k)-dimensional spatial
vectors of maximal size

Table 6.3: Spatial parameter types

AxisContributions are used in interpolation, the only appropriate element type is Real.

A spatial parameter type is a structure that is defined over the computational domain
or over a subdomain (Table 6.6, shown in Figure 6.3). The appropriate element types are

Boolean, Character, Integer, Index and Real.

An important property of spatial parameter types is that, rather than having individual
solution vectors as a spatial parameter type, such vectors come in sets, where all members
of the set have the same attributes.® Thus, for example, an application might have den-
sity, energy and velocity components as one set of solution vectors, and the magnetic field

components as another, perhaps defined on different staggerings. Sets of vectors provide

3Thanks to M. Norman for proposing this idea.

144

SpaceParameterSet SpacetimeVariableSet

! |01r?ew v
| 5 I|011?6W u
| v Lold o €
| 6 | old
o new
SurfaceParameterSet SurfaceVariableSet
gledw BU
F’U gledw B’M
?’u gledw Be
e
Fp HH H H ‘TWHBH H
MaximalParameterSet MaximalVariableSet
\ /

Figure 6.6: Layout of spatial parameter types

145

an additional advantage: potentially, they can reduce the number of entries in the formal
argument list of an application subroutine, which may be an issue if the subroutine requires
a great many arguments and if the compiler has a hard-coded limit on the maximum length
of the argument list.

HAMR provides six spatial parameter types, grouped into pairs, with each pair having a
time-dependent version of the type called a Variable, and a time-independent version called

a Parameter. The three pairs are:

e SpacetimeVariableSet and SpaceParameterSet;

e SurfaceVariableSet and SurfaceParameterSet;

e MaximalVariableSet and MaximalParameterSet.

The first pair is the set of vectors that completely cover the subdomain. The most
obvious example of a SpacetimeVariableSet is the set of solution vectors; a good example
of a SpaceParameterSet is the set of selection flags corresponding to each solution vector.

The Surface sets, on the other hand, cover only the (d—1)-dimensional interface surfaces
of the subdomain; that is, the two endpoints in 1D, the four sides in 2D, the six faces in 3D,
and so on. An example of a Surface set is the set of correction vectors for a set of solution
vectors.

Finally, Maximal sets are sets of a particular rank whose size is the largest possible
surface of that rank. For example, for a grid of 30 x 40 x 20 cells, the maximal set of

rank 1 has 41 nodes, and the maximal set of rank 2 has 31 x 41 nodes. (The rank d

146

maximal set is simply the collection of all nodes for the grid.) Maximal sets are provided as
a programming convenience, as they can be used as temporaries in certain finite difference
schemes.* For example, in directional sweep strategies, some components of the difference
scheme are applied to each slice plane of the grid in succession, marching along a particular
axis, and then similarly along the next axis, and so on. Often, the requisite temporary work
space matches the size of the slice plane. However, rather than allocating space sufficient for
each of the d possible planes, a single maximal surface can be allocated, to be used by each
sweep In turn.

Spatial set types are implemented as contiguous blocks, in precisely the same manner as
structured parameter types; in fact, they are built on top of the type definition for Lists.
A SpacetimeVariableSet has three indices: the variable within the set, the time level, and
the index within the mesh. In this case, the mesh index is a composite index, rather than
a reference for each dimension. As with structured parameter types, an element can be
accessed either by dereferences or by a global index (Figure 6.7).

An exception to this contiguity property of spatial parameter types is the Surface types,
which are not completely contiguous, because the sizes of their surface components vary
according to surface plane they represent. For example, a SurfaceVariableSet on a 30 x
40 x 20 grid has X-Y surfaces of 30 x 40 cells, X-7 surfaces of 30 x 20 cells and Y-Z surfaces
of 40 x 20 cells. Thus, the surface sets themselves are implemented discontiguously, with

contiguity only within a specific face (Figure 6.8).

*Thanks to G. Bryan for proposing this idea.

147

spacetimevariableset[varnum] [time_level] [((k * nj + j) * ni + i]
(a) sequential dereference

**kspacetimevariableset
[(((varnum * number_of_time_levels +
time_level) * total_loci + k) * nj + j) * ni + i]

(b) contiguous index

subroutine subrtn (stvarset, ni, nj, nk, ntl, nvar)
real stvarset(ni,nj,nk,ntl,nvar)
integer ni, nj, nk, ntl, nvar

(¢) Fortran formal argument declaration

subrtn_(**spacetimevariableset, ni, nj, nk,
number_of_time_levels, number_of_members) ;

(d) actual arguments for calling to Fortran

Figure 6.7: Indexing in a SpacetimeVariableSet

148

surfacevariableset
[axis] [extreme] [varnum] [time_level] [((k * nj + j) * ni + i]

(a) sequential dereference
(xx(surfacevariableset[axis] [extreme]))
[(((varnum * number_of_time_levels +
time_level) * total_loci + k) * nj + j) * ni + i]

(b) contiguous index

subroutine subrtn (srfvarsetxmin, srfvarsetxmax,

+ srfvarsetymin, srfvarsetymax,
+ srfvarsetzmin, srfvarsetzmax,
+ ni, nj, nk, ntl, nvar)

real srfvarsetxmin(nj,nk,ntl,nvar), srfvarsetxmax(nj,nk,ntl,nvar),
+ srfvarsetymin(ni,nk,ntl,nvar), srfvarsetymax(ni,nk,ntl,nvar),
+ srfvarsetzmin(ni,nj,ntl,nvar), srfvarsetzmax(ni,nj,ntl,nvar)

integer ni, nj, nk, ntl, nvar
(¢) Fortran formal argument declaration

subrtn_(
** (surfacevariableset [X] [MINIMUM]), **(surfacevariableset[X] [MAXIMUM]),
** (surfacevariableset [Y] [MINIMUM]), **(surfacevariableset[Y] [MAXIMUM]),
** (surfacevariableset [Z] [MINIMUM]), **(surfacevariableset[Z] [MAXIMUM]),
ni, nj, nk, number_of_time_levels, number_of_members);

(d) actual arguments for calling to Fortran

Figure 6.8: Indexing in a SurfaceVariableSet

149

Finally, Maximal sets are implemented and indexed in precisely the same manner as their
Space/Spacetime counterparts, but are of lower dimension.

The final category of parameter types, methods, are types whose values are pointers to
functions. Specifically, the two method parameter types implemented in HAMR are Method
and SetMethod; the latter is a set of methods corresponding to a spatial set, with one method
value for each member (or some subset of the members) of the archetypal spatial set. Method

types can have as element types Boolean, Character, Integer, Index, Real and Void.

6.1.3 Type Attributes

The data types that HAMR defines employ a variety of both structural and functional
attributes. These vary according to the shapes of the data types and the roles that the types
play.

All stratiform types have a parameters attribute, which indicates how many data items
of that stratiform type have been declared, and each data item has a name attribute. In
addition to these universal attributes, each data type has its own set of attributes, which

describe its computational shape and its relationships to other data types.

6.1.3.1 Structural Attributes

Among element types, Voids, scalars and Strings contribute no attributes to their overall
data types. Dimensional and extreme element types contribute a single attribute, the number

of axes that they span. Superficially, this attribute may appear redundant. However, some

150

Parameter Type | Structural Attributes

Single none

List elements (Integer)

Array lists (Integer), elements (IntegerList)
ArrayBox lists (Integer), elements per list (Integer)
ArrayLlist arrays (Integer), lists (IntegerList),

elements (IntegerArray)

ArrayListBox | arrays (Integer), lists per array (Integer),
elements per list (Integer)

ArrayArray arraylists (Integer), arrays (IntegerList),
lists (IntegerArray), elements (IntegerArrayList)

ArrayArrayBox | arraylists (Integer), arrays per arraylist (Integer),
lists per array (Integer), elements per list (Integer)

Queue none

Table 6.4: Attributes of structured parameter types

dimensional and extreme data items have a different rank than the computational domain.
The most obvious example is the refinement factor, an IntegerVector that has entries not

only for each dimension but also for time, thus requiring d 4+ 1 elements.

The attributes of data items of structured parameter types explicitly describe the items’
computational shapes (Table 6.4). All of these structural attributes are referential; that is,
each is a pointer to a data item of the appropriate type. In addition, all structured types
except scalars and linked types have a nonreferential permanence attribute, which indicates
their extent category. (Linked structures have no permanence because they are necessarily

created on the fly.)

An Integer can have not only its intrinsic role, but also roles with respect to other

data items. For example, it may be the number of elements or elements_per_list of

151

any of the structured types (except Single). Similarly, an IntegerList can take on the
role of elements for an Array, lists for an ArraylList or arrays for an ArrayArray;
an IntegerArray can take on the roles of elements for an ArrayList or lists for an

ArrayArray; an IntegerArrayList can take on the role of elements for an ArrayArray.

Similarly, an IntegerStencil can play other roles; specifically, it can be the stencil
attribute of a dimensional or spatial data item, or it can be the increment attribute of an

AxisContribution (see below).

A Level RealList may play one other role: it may contain the relative time values
of a spatiotemporal data item. Whether that is the case for a specific data item de-
pends on whether it has any reciprocal time attributes, which is indicated by nonzero
time_module_dependants. If so, then it has additional attributes that are derived from the
values of the List and from other time information. The additional temporal attributes (Fig-
ure 6.9) are the number of time_levels, which is actually a reference to the list’s elements
attribute, and the time level indices among those stored that represent the old and new solu-
tions, old_time_level and new_time_level. For each stored time level, the data item has
these attributes: the time interval between the given timestep and the timestep previous to
it, time_interval_from_previous; the absolute physical time, absolute_time; the overall
timestep for the level, absolute_level_timestep; and the contribution of each parent time
level to the injected value of the specific time level of the data item, time_contribution.
Thus, a data item that contains relative time values has four RealList attributes attached

to it, each of the same length as the data item, which describe the listed time information.

152

PPM time levels

2

elements attribute

PPM relative time

0.0 1.0

absolute time attribute

> 1+ kAt 4 (k+ 1)At

absolute level timestep attribute
[227 228

time interval from previous attribute

—>> At At

time contribution attribute

—> 0.2 0.8

Figure 6.9: Time attributes of a RealList

153

Dimensional parameter types have fewer attributes. The structural attributes of an
AxisDescription are axis_loci, which is the number of loci along each axis, and which is
an IntegerVector; axis_staggering, the staggering along each axis (that is, cell-centered
or on the nodes); a stencil, which is a variform reference to an IntegerStencil; and a
Boolean permanence. An AxisContribution has several structural attributes: the interpo-
lation increment, a variform stencil so that its values can cover not only the computational
domain but also any exterior regions to which it might be applied; the number of axis_loci,
and the relationship it applies to (that is, injection or projection). AxisContribution

data items have no permanence attribute, because they are implicitly permanent.

The parameter types with the most structural attributes are the spatial parameter types,
which have the following: the relative spatial_resolution (that is, the data item can have
the resolution of the level it is on, the immediately coarser level, or the immediately finer
level) and the associated refinement_factor; a variform reference stencil_pointer and a
local copy of the the stencil itself, to ensure consistency in the event that the stencil referent
changes after the instance of the data item is created; the axis_set (for example, in three
dimensions, all axes, an XY-plane, the XZ-plane, the X-axis, and so on); the staggering; and
the number of loci along each axis, axis_loci. In addition, all spatiotemporal parameter
types have variform time attributes, one of which points to a Level RealList data item
that contains the relative time values, and the rest of which point to that data item’s time

attributes.

In addition to these attributes, SurfaceParameterSet and SurfaceVariableSet data

154

items have a thickness attribute. If the thickness attribute is empty, for example in the
case of a set of correction vectors, then the thickness of the surfaces is one locus; that is, the
surface is a set of computational planes corresponding to the interface of the grid. Otherwise,
each extreme along each axis can have its own thickness, according to the instance of the data
item that is declared as the thickness attribute. For an example of a SurfaceVariableSet
with non-unitary thickness, consider a case in which a surface is used to store the spatially
interpolated values of the boundary region of the grid, to save computation time during
iterations on the grid’s level. (This case might arise for an interpolation scheme that is very
computationally expensive relative to the cost of advancing the solution, for example a higher
order conservative interpolation.) Here, the thickness of the boundary surface would be the
ghost boundary stencil of the associated solution vector. From these spatially interpolated
values, the spatiotemporally interpolated boundary values can be obtained with minimal
computational overhead, such as would be incurred with linear time-weighted interpolation,
which is a very common time interpolation scheme.

MaximalParameterSet and MaximalVariableSet data items have a rank attribute rather
than a thickness attribute, which indicates the number of dimensions of the maximal
surface; that is, a rank of 1 indicates the longest line, a rank of 2 indicates the plane of
greatest area, and so on. If the rank is d, then the maximal surface is the space covered by
the grid’s nodes.

Spatiotemporal parameter types also have attributes expressing their time characteristics.

Among these are the temporal_resolution (that is, whether its time information is drawn

155

locally, from the parent level or from the child level), and references to the relative_time

list and its associated time attributes.

Resolutions are an important property of spatial sets. The spatial resolution of a set
indicates whether the set has the resolution of the level that encapsulates it, the resolution of
the immediately coarser level, or the resolution of the immediately finer level. The advantage
of this approach is that it allows every set that derives its shape from a particular grid to be
a data item for that grid. For example, the correction vectors that are ultimately applied to
a parent grid have shapes based on its children (Figure 4.14). Thus, the correction vectors
are data items of the child grids, thereby requiring minimal extra information to determine
their shapes and locations in the domain. But the set of fluxes taken from the parent grid
are stored in a child-shaped surface with the parent’s resolution, while the aggregate flux
sums taken from the child grid are also stored in a child-shaped surface, but with the child’s
resolution. The operations that combine these fluxes can be performed locally on the child,

then transferred to the parent when the result is obtained (Figure 6.10).

Finally, spatial data types also have attributes that describe the characterics of their set
properties. First, every set has a number of members, each of which has a member_name.
Next, every set has a (possibly empty) archetype attribute. The archetype of the set s; is
another set s, such that the members of the set s; are a subset of the members of s5. Finally,
every set has a list of member indices that directly map each member of the set to a member
of its archetype. The advantage of this approach is that some sets are used for purposes

that do not necessarily apply to all the members of the set’s archetype. As an example,

156

Precorrection
|
[| |

“““““““ \ Postcorrection
|

Figure 6.10: Spatial data items of different resolutions

consider a selection criterion that concerns itself only with a subset of the variables. In this
case, the selection SpaceParameterSet data item should have vectors only corresponding to
the variables from which grid points are selected, to minimize memory consumption (Figure
6.11).

As for method parameter types, they are very limited in their structural attributes; in
fact, Methods have none. SetMethods have an one structural attribute, the set archetype,
which maps the members of the SetMethod to the members of its spatial set archetype, in

precisely the same manner as for set archetype relationships between spatial sets.

6.1.3.2 Functional Attributes

In addition to structural attributes, all data types have functional attributes as well.

Structured types have an initialization method attribute initialize, a finalization

157

SpacetimeVariableSet

solution

] _old v
‘ new

] _old u
‘ new

. ‘OIrcllew €

1d
. onew p

SpacetimeVariableSet solution:
Member density, Member energy,

SpaceParameterSet

solution selection

Member u-velocity, Member v-velocity, Member w-velocity;

SpaceParameterSet solution selection:

Archetype solution, Member density, Member energy;

Figure 6.11: Set archetype

elements:

o If there are at least as many initial values as components of the type being initialized,

then the initial values are simply copied into the components, up to the number of

components.

method attribute finalize, and a list of initial values. (Typically, a structured data item
will have either an initialization method or a set of initial values, but in principle nothing
prohibits it from having both.) When an instance of a structured data item is created, its
initialization sequence first determines whether it has any initial values, and if so assigns
them, and then checks whether it has an initialization method, and if so executes it. If there

are initial values, then a cascade of choices determines which values are assigned to which

o If there is only one initial value, it is assigned to all the components.

158

o If the element type is an extreme type, and there are two initial values, then they are

assigned respectively to every pair of extrema in every element.

o If the element type is a dimensional type, and there are no more initial values than axes,
then each initial value is assigned to the component corresponding to the associated

axis, with the last initial value being propagated to further axes if necessary.

o If the element type is an extreme type, and there are no more initial values than
twice the number of axes, then each initial value is assigned to the component corre-
sponding to the associated axis, with the last initial value being propagated to further

components if necessary.

o Otherwise, the initial values are assigned to the first set of elements, and then the last
few initial values are assigned to the rest of the components, according to the other

rules.

Of course, the latter rules can be circumvented by providing sufficient values to cover all
components, and thus employing only the first rule.

Like structured parameter types, dimensional parameter types also have attributes for
initialization and finalization methods, and these attributes apply in precisely the same way
as for structured parameter types.

Spatial types have several different functional attributes, referring to data as well as
methods. In addition to methods for initialization and finalization, the methods of a spatial

data item are inject, project, extrapolate, correct, select, input, and output. (To

159

promote disambiguity, method functional attributes take on the verb form of the operation
name.) These methods are typically called from within a module, and they operate on the
particular data item. For example, the inject attribute of a SpacetimeVariableSet applies
a specific injection method from a parent’s instance of the data item to a child’s instance,
over a specified computational region on each.

Spatial types also have several functional data references:

e collection, which contains the ghost boundary values collected from the parent,
and can either be the raw parental values at the parents’ resolution, or the spatially

interpolated values at the local resolution;

e extrapolation, which contains the values on the exterior of the computational do-
main, for example in a case where those values are time-independent but expensive to

calculate;

e precorrection, which contains the flux values obtained by a grid’s parents, at the
parents’ resolution, which will later be compared to the aggregate flux values of the

grid itself;

e postcorrection, the aggregate flux values of the grid;

e selection, the flags for refinement on each variable from which refinement regions are

selected.

(To promote disambiguity, data functional attributes take the noun form of the name of the

160

operation.)

As for method parameter types, their attributes describe the set of potential function
values that they can take on: the number of potential_values; a list containing a function
pointer corresponding to each potential_value; and the current value index. In the case
of a SetMethod, the number of potential_values is an IntegerList, with one entry per
member, and the structure containing every potential_value entry is an array of function
pointers. In the case of a Method, the respective attributes are an Integer and a list
of function pointers. In addition, Method data items have a data_method_value_index
and SetMethod data items have a set_method_value_index; the former is a single index
indicating which of the potential function pointer values has been assigned to the data item,

and the latter is a list of such indices, one for each member of the set.

6.2 The HAMR Function Library

The HAMR function library comprises the functionality required for the many data types
used by grid hierarchies in Berger’s adaptive mesh refinement strategy. The library has a
set of subroutines that operate on each category of parameter type. Each library function is
designed in a manner that promotes generality, by decoupling the specifics of the size and
shape of the data item(s) on which it operates from the operation itself; typically, this design
goal is achieved by providing support for as many cases as possible — including, for example,

support for each possible rank of a spatial type, and separate cases for operand aliasing.

161

6.2.1 Structured Library Functions

The HAMR function library provides several categories of operations on structured types:
e memory management;
e assignments;
e reductions;
® comparisons;
e unary operations;

e binary operations.

6.2.1.1 Memory Management

Associated with every data type, are memory management functions that perform allocation
and deallocation of instances of the data type. Specifically, for each element type, there are
corresponding memory management operations over all the structured parameter types. If
the element type is a scalar, then the most primitive operation is the allocation of a list of
that element type. However, if the type is non-scalar, then the most primitive operation
is the allocation of a single instance of the type, and there is also associated an operation
that allocates a framework for a list of the element type. In the case of Strings, for ex-
ample, there is a function String_allocate that allocates space for a single String, and

a function StringlList_framework_allocate that allocates space for the list of pointers

162

ElementTypelist ElementTypelist_framework_allocate (Integer elements)
{ ElementTypelList elementtypelist; Integer e;
elementtypelist = memory_allocate(sizeof (ElementType) * elements);
for (e = 0; e < elements; e++) elementtypelist[e] = NULL;
return elementtypelist; }

Figure 6.12: Framework allocation

to Strings. The other non-scalar element types are designed similarly; for example, an

IntegerStencilList is actually a list of pointers to IntegerStencils.

Thus, every allocation — except of a list of scalars or of a single instance of a non-scalar
element type — is actually an allocation of a framework. After each framework is allocated,
its entries are set to the null pointer as a matter of course (Figure 6.12), because in some

cases only the framework itself is required, with the entries to be filled in later.

However, in most cases a framework is allocated because it is required as part of a full data
item. In such a case, the allocation function allocates an appropriate framework, allocates
the next most complex structured type, then assigns to the elements of the former pointers to
the elements of the latter (Figure 6.13). The advantage of this approach is that it maximizes
code reuse, since each level of complexity adds only a small amount of coding, which is built
on top of the functions for less complex types.

String structured types are an exception to this pattern. In this case, the allocated
structures do not contain any actual String values; rather, since the length of an instance of
a String is rarely known beforehand, the structure is simply a framework of the appropriate

complexity, and the instances are inserted on the fly.

163

ElementTypeArrayBox ElementTypeArrayBox_allocate (
Integer lists, Integer elements_per_list, Integer axes)

{ ElementTypeArrayBox elementtypearraybox; Integer 1;

elementtypearraybox = ElementTypeArray_framework_allocate(lists);

*elementtypearraybox = ElementList_allocate(lists * elements_per_list);

if (elements > 1)

for (1 = 1; 1 < elements; 1++)
elementtypearraybox[1l] =
&(elementtypearraybox[0] [1 * elements_per_list]);
return elementtypearraybox; }

Figure 6.13: ArrayBox allocation

ElementTypeArrayBox ElementTypeArrayBox_free (
ElementTypeArrayBox elementtypearraybox,
Integer lists, Integer elements_per_list, Integer axes)
{ ElementTypelist_free(*elementtypearraybox, lists * elements_per_list);
ElementTypeArrayBox_framework_free(elementtypearraybox, lists);
return NULL; }

Figure 6.14: Deallocation

Deallocation is even simpler than allocation, because the values of the elements and
pointers are not of concern. Thus, deallocation requires only a recursive deallocation of the

next most complex structured type, and then deallocation of the most complex framework

(Figure 6.14).

Every allocation and deallocation is logged, both by the memory management routines
of the type category, and by the generic memory management routines on which they are

based. As a result, memory use statistics can be easily collated and reported.

164

6.2.1.2 Assignments

The simplest operations on a structured type are assignments, which operate on a single
instance of the type.

Among the assignment operations is the assignment of a constant to all elements of a
structure, or to some subset of the elements. This constant can be a scalar, or in the case
of dimensional and extreme element types, a single instance of the element type. In fact,
with such element types, several different assignments are provided: assigning a scalar to
every component of every element, assigning a scalar to a specific individual component
of every element, and, as mentioned, assigning an instance of the element type to every
element. Because of the contiguous nature of the structured types, many operations on
more complex types are simply calls to the same operations on less complex types, with
appropriate dereferencing (Figure 6.15).

In addition to generic assignments, HAMR also provides assignments of specific, com-
monly used values, including zero, one, an undefined value (for example, to clear a structure
of indices, which indicates that certain indices have not yet been assigned), true and false
values for boolean structures, and so on. These functions are provided as a programming
convenience, and are implemented by calls to more generic assignments with the appropriate

constant argument.

6.2.1.3 Reductions

Reductions are operations that derive a single value from multiple elements. Among the

165

Void ElementTypeArrayListBox_set_to_constant (
ElementTypeArraylListBox elementtypearraylistbox,
Integer arrays, Integer lists_per_array, Integer elements_per_list,
ElementType constant)
{ ElementTypeArrayBox_set_to_constant(*elementtypearraylistbox,
arrays * lists_per_array, elements_per_list); }

Void ElementTypeArrayBox_set_to_constant (
ElementTypeArrayBox elementtypearraybox,
Integer lists, Integer elements_per_list, ElementType constant)
{ ElementTypelist_set_to_constant (*elementtypearraybox,
lists * elements_per_list); }

Void ElementTypelist_set_to_constant (ElementTypelist elementtypelist,
Integer elements, ElementType constant)
{ Integer e;
for (e = 0; e < elements; e++) elementtypelist[e] = constant; }

Figure 6.15: Assignment to a complex structured type

reduction operations HAMR provides are aggregates, instance examinations and extrema

examinations.

An aggregate reduction is one that performs an arithmetic operation on the elements of

a structure, in order to produce a single value. HAMR provides sum, product and mean ag-

gregates (Figure 6.16); the first two are direct calculations, while the last is accomplished by

performing a sum and then dividing the result by the number of elements. The sum opera-

tion also plays an important role with respect to operations on non-Box Arrays, ArrayLists

and ArrayArrays: such operations require the sum of the number of items in the next-to-

outermost index, in order to determine the length of the outermost dimension of the next

most complex structured type, which is required by the recursive call to the associated

166

ElementType ElementTypelist_sum (ElementTypelist elementtypelist,
Integer elements)
{ ElementType sum; Integer e;
for (e = 0; e < elements; e++) sum += elementtypelistl[e];
return sum; }
ElementType ElementTypelist_product (ElementTypelist elementtypelist,
Integer elements)
{ ElementType product; Integer e;
for (e = 0; e < elements; e++) product *= elementtypelistle];
return product; }
ElementType ElementTypelist_mean (ElementTypelist elementtypelist,

Integer elements)
{ return ElementTypelist_sum(elementtypelist, elements) / elements; }

Figure 6.16: Aggregate operations

function on that type (Figure 6.17).
Next, an instance examination is an operation that searches for instances of a value and
performs some operation with respect to the instances. The instance operations HAMR

provides are

e identification of the first instance of the value in a structure;

e identification of the last instance of the value in a structure;

e counting the number of instances of the value;

o determining whether the structure contains any instances of the value.

The last of these operations is implemented by determining the first instance of the value: if

the result of that operation is undefined, then the structure does not contain the value. (In

167

ElementType ElementTypeArray_operation (
ElementTypeArray elementtypearray,
Integer lists, IntegerList elements)
{
ElementTypelist_operation(*elementtypearray,
IntegerList_sum(elements, lists));

ElementType ElementTypeArrayList_operation (
ElementTypeArrayList elementtypearraylist,
Integer arrays, IntegerList lists, IntegerArray elements)
{
ElementTypeArray_operation(*elementtypearraylist,
IntegerList_sum(lists, arrays), *elements);

ElementType ElementTypeArrayArray_operation (
ElementTypeArrayArray elementtypearrayarray,
Integer arraylists, IntegerList arrays,
IntegerArray lists, IntegerArraylList elements)
{
ElementTypeArraylList_operation(*elementtypearrayarray,
IntegerList_sum(arrays, arraylists), *lists, *elements);

Figure 6.17: Operations on non-Box array structures

168

principle, this operation could also be implemented by counting the number of instances of
the value, and then determining whether that count is nonzero, and typically the count of
the instances optimizes significantly better than the search for the first instance. However,
the counting operation does not short circuit when an instance is found, and the advantage
of optimization is unlikely to outweigh the advantage of short circuiting when examining a
structure with a large number of elements.)

Finally, an extreme examination is like an instance examination, except that the value it
examines is an extreme — that is, either the minimum or the maximum value of the structure.
The extreme operations in HAMR, each of which is available for both the minimum and the

maximum, are:

determination of the value of the extreme;

identification of the first instance of the extreme in a structure;

e identification of the last instance of the extreme in a structure;

counting the number of instances of the extreme.

6.2.1.4 Comparisons

HAMR provides the standard comparisons — equal, not equal, less, less or equal, greater,
greater or equal — both between the elements of two structures of the same shape, and

between a structure’s elements and a constant. Every comparison operation has a boolean

169

Void ElementTypelList_equal (
BooleanlList dstbooleanlist,
ElementTypelist srcelementtypelistl,
ElementTypelist srcelementtypelist2, Integer elements)
{ Integer e;
if (srcelementtypelistl == srcelementtypelist2)
BooleanlList_set(dstbooleanlist, elements);
else
for (e = 0; e < elements; e++)
dstbooleanlist[e] =
srcelementtypelistl[e] == srcelementtypelist2[e];

Figure 6.18: Comparison operand overlap cases

field as its destination operand; that is, the values on the source operands are mapped to

flags on the destination operand.

Comparison operations (and other operations that have multiple structured operands)
employ multiple versions of the operation, with each version covering a different case of
operand overlap. This approach maximizes the potential for optimization, because it allows
the compiler to assume legitimately that, within each loop, each individual operand refers to
a distinct area of memory. In the case of comparisons between two structured operands, the
two cases are that the operands are actually the same structure and that they are different
structures (Figure 6.18), except in the case of boolean comparisons, in which case it may
be the case that one or both of the source operands overlap the destination operand. (In
practice, this rule only applies to operations on Lists, because operations on more complex

structured types are implemented by recursively calling operations on less structured types.)

170

Void ElementTypelist_negate (
ElementTypelist dstelementtypelist,
ElementTypelList srcelementtypelist, Integer elements)
{ Integer e;
if (dstelementtypelist == srcelementtypelist)
for (e = 0; e < elements; e++)
dstelementtypelist[e] = -dstelementtypelistle];
else
for (e = 0; e < elements; e++)
dstelementtypelist[e] = -srcelementtypelistle]; }

Figure 6.19: Unary negation

6.2.1.5 Unary Operations

Unary operations require one source operand and one destination operand. HAMR’s unary
operations include copying, absolute value, negation, square root, exponential, and the
boolean not operation. A typical unary operation has two cases, one in which the operands
are the same structure, and one in which they are different (Figure 6.19). Technically, the
source operand of a unary operation could be a constant, instead of a structured operand.

However, such operations are classified as assignments, and are treated separately.

6.2.1.6 Binary Operations

Binary operations require two source operands and one destination operand. HAMR’s binary
operations are the standard arithmetic operations — addition, subtraction, multiplication,
division and remainder — as well as the boolean operations and, (inclusive) or and exclusive

or. A typical binary operation has five cases that address the various combinations of

171

Void ElementTypelist_add (ElementTypelist dstelementtypelist,
ElementTypelist srcelementtypelistl,
ElementTypelist srcelementtypelist2, Integer elements)
{ Integer e;
if (srcelementtypelistl == srcelementtypelist2)
if (dstelementtypelist == srcelementtypelistl)
for (e = 0; e < elements; e++) dstelementtypelist[e] *= 2;
else for (e = 0; e < elements; e++)
dstelementtypelist[e] = srcelementtypelistife] * 2;
else if (dstelementtypelist == srcelementtypelistl)
for (e = 0; e < elements; e++)
dstelementtypelist[e] += srcelementtypelist2[e];
else if (dstelementtypelist == srcelementtypelist2)
for (e = 0; e < elements; e++)
dstelementtypelist[e] += srcelementtypelistil[e];
else for (e = 0; e < elements; e++)
dstelementtypelist[e] =
srcelementtypelisti[e] + srcelementtypelist2[e]; }

Figure 6.20: Typical binary operation

overlapping operands (Figure 6.20).°

In addition to binary operations on two structured source operands, HAMR also includes
such operations for cases in which one operand is a constant (Figure 6.21), with a single
function for each commutative operation — i.e., addition, multiplication, and the boolean
binary operations and, inclusive or and exclusive or — and two functions for each non-
commutative operation — i.e., subtraction, division and remainder — one for each ordering

of the operands. For example, the two subtraction operations are subtract_constant and

SMore formally, for k structured operands including the destination, there are 2 — k cases, because

k
Zle (z) = 2% [Tuc84], and the concept of a single operand overlapping itself is meaningless, which

k
eliminates (1) = k cases.

172

Void ElementTypelList_add_constant (ElementTypelist dstelementtypelist,
ElementTypelist srcelementtypelist, Integer elements,
ElementType constant)

{ Integer e;

if (constant == 0)
ElementTypeList_copy(dstelementtypelist,srcelementtypelist,elements);
else if (dstelementtypelist == srcelementtypelist)
for (e = 0; e < elements; e++) dstelementtypelist[e] += constant;
else for (e = 0; e < elements; e++)
dstelementtypelist[e] = srcelementtypelist[e] + constant; }

Figure 6.21: Typical binary operation with constant operand

subtract_from_constant, with a structured minuend for the former and a structured sub-

trahend for the latter.

Most binary operations with a constant operand also treat special cases based on the
value of the constant. For example, the function for adding a constant to a structured data
item includes special treatment of the case in which the constant is zero; specifically, the
addition reduces to a copy, as does subtraction of zero, multiplication by one and division by
one. Subtraction from zero reduces to negation, and remainder by one reduces to assignment

of zero.

6.2.2 Dimensional Library Functions

For each dimensional parameter type, the HAMR function library provides appropriate func-
tionality. For AxisDescriptions, HAMR provides the same functions as for structured

types: the AxisDescriptions are implemented as Arrays of the same element type, and

173

Void ElementTypeAxisDescription_set_to_constant (
ElementTypeAxisDescription elementtypeaxisdescription,
AxisStaggering axisstaggering, IntegerVector axisloci,
Integer axes, ElementType constant)

{ ElementTypeArray_set_to_constant(elementtypeaxisdescription,

axes, axisloci, constant); }

Figure 6.22: Typical AxisDescription operation

so the AxisDescription functions are implemented as calls to the corresponding Array
functions (Figure 6.22).

As for AxisContributions, they require very different operations, because of their
unique purpose. Aside from allocation, deallocation and copying, the other functions on
AxisContributions are initializers for various combinations of mesh type and coordinate

system.

6.2.3 Method Library Functions

HAMR provides limited functionality for method types, because most of the operations avail-
able for other types are inappropriate for methods. Specifically, HAMR provides allocation,
deallocation, copying and assigning a constant (i.e., a function pointer value). In fact, when
a MethodList or SetMethodList is allocated, its entries are automatically initialized to an
empty function that returns a neutral value of the appropriate element type (or no value).
For example, the entries of a newly allocated VoidMethodList are all assigned a pointer to

the function Void_do_nothing, which takes no arguments and has an empty function body.

174

This preassignment of the neutral function guarantees that executing the function pointer

will not abort the run.

6.2.4 Spatial Library Functions

The HAMR function library provides the same categories of operations for spatial types
as for structured types, with one additional category, interpolation. Spatial functions are
intended to be maximally self-contained, in the sense that each function addresses as many
cases as possible. For example, each function treats one-, two- and three-dimensional cases

with equal ease. More generally, a spatial function:

o determines whether the spatial operands are linearly independent, and if not — for
example, if the lengths of all the spatial operands are one locus along some axis or axes
— then reduces the formal arguments to the true rank of the operands and calls the

function recursively;

e determines whether any special case — that is, a case whose calculation is simpler than
the general case — is applicable, and if so applies that case, often by calling another,

simpler library function;

e otherwise, performs the operation, choosing the case that corresponds to the combina-

tion of spatial operands that overlap, if any.

Spatial functions come in several categories of operational complexity:

175

Contiguous | Offset | Striding | Marginal | Incremental | Injection | Projection
Assignment Vv Vv Vv
Reduction Vv Vv v Vv Vv Y
Comparison Vv Vv Vv Vv
Unary Vv Vv Vv Vv
Binary Vv Vv Vv Vv
Interpolation Vv Vv Vv Vi

Table 6.5: Function complexities of operation categories

e contiguous;

o offset;

o striding;

e marginal;

e incremental;

e injection;

e projection.

Most of the operation categories are relevant to only a subset of the complexity categories

(Table 6.5).

6.2.4.1 Contiguous Operations

Contiguous operations are those that treat an entire spatial operand, or treat entire multiple
operands of identical shape; they are implemented by calling the corresponding function for

a List of that element type. For example, if two operands defined over the computational

176

interior of a grid are to be added, with the sum placed in a third operand of identical shape,

then the operation can be performed contiguously (Figure 6.23).

6.2.4.2 Offset Operations

Offset operations are those that operate over a subregion of a spatial operand, or more
commonly over different subregions of multiple operands (Figure 6.24). A common use of
an offset operation is to perform the operation over a bounded operand, but only on the
computational interior; for example, to divide the interior of one operand by the interior
of another, as would be the case in obtaining velocity from momentum and density. In
such a case, it can be crucial to avoid dividing the boundary as well, since the denominator
operand may be known to have nonzero interior values, but there may be no such certainty
about the boundary, for example if the boundary values have not been collected recently.
Similarly, cases often arise in which the operation should be performed on the boundaries
but not the interior, or on the boundary of one grid and the interior of another — as in the
case of copying boundary values from a sibling (Figure 6.25). Indeed, offset operations are
probably the most commonly used in HAMR, because they provide maximum generality for
operations on a single level of resolution.

Offset operations take three structural arguments for each operand: staggering, number
of loci along each axis, and starting index. In addition, such operations take a single length
vector, which describes the number of loci along each axis on which to perform the operation,

for all of the operand regions. This arrangement guarantees that the regions are of identical

177

|

I |
e

Void ElementTypeField_contiguous_add (
ElementTypeField dstelementtypefield,
ElementTypeField srcelementtypefieldl,
ElementTypeField srcelementtypefield2,
AxisSet axisset, Staggering staggering,
IntegerVector axisloci, Integer axes)
{ ElementTypelist_add(dstelementtypefield,
srcelementtypefieldl, srcelementtypefield2,
ElementTypeField_number_of_loci(axisset, staggering, axisloci, axes)); }

Figure 6.23: Contiguous addition

178

srcl

src2

dst

Figure 6.24: Offset addition

Figure 6.25: Offset copy from sibling to boundary

179

shape, regardless of the shapes of the operands themselves.

All offset operations except interpolation must treat two special cases. First, if the offsets
cover the entire corresponding spatial operands, and the operands are of identical shape, then
quite naturally the contiguous version of the operation is called. Second, if the rank of the
operands is 1, then the contiguous operation can be called on the subregions indicated by
the offset arguments.

If neither of the special cases apply, then the operation is performed directly. Thus, each
offset function has, for each rank up to some maximum rank® that is defined at compile time,

a set of nested loops, one for each axis (Figure 6.26).

6.2.4.3 Striding Operations

Striding operations perform over subregions of the input operands, in the same manner
as offset operations, but perform the operation on only some of the loci within the subre-
gions. Specifically, each operand has not only offset arguments but also a stride argument,
an IntegerVector that dictates which loci will be operated on; those loci are a fixed dis-
tance apart along each axis, with the distance indicated by the corresponding stride vector
component.

A common example of a striding operation is the use of a striding copy to obtain exterior
boundary conditions on a reflecting boundary. Specifically, the cells closest to the exterior

boundary are copied into the ghost region using a stride of -1 along the axis corresponding

5Currently, the maximum rank can be has high as six.

180

Void RealField_offset_set_to_constant (RealField realfield,
AxisSet axisset, Staggering staggering,
IntegerVector axis_loci, IntegerVector size, IndexPoint start,
Integer axes, Real constant)
{ ...
if (axes == 1) {
RealField_contiguous_set_to_constant(&realfield[*start],
axisset, Staggering cell_center(axes), size, axes, constant);
return; }
switch (axes) {
case 2:
startl = start[0]; sizel = sizel[0]; all = axis_locil[0];
start2 = start[1]; size2 = sizel[1];
for (a2 = 0; a2 < size2; a2++)
for (al = 0; al < sizel; al++)
realfield[al+startl + alil*(a2+start2)] = constant;

break;

case 3:
startl = start[0]; sizel = sizel[0]; all = axis_locil[0];
start2 = start[1]; size2 = sizel[1]; al2 = axis_locil[1];
start3 = start[2]; size3 = size[2];

for (a3 = 0; a3 < size3; a3++)
for (a2 = 0; a2 < size2; a2++)
for (al = 0; al < sizel; al++)
realfield[al+startl + alilx(a2+start2) + all*al2*(a3+start3d)] =
constant;
break;

Figure 6.26: Nested loops in an offset operation

181

to that boundary, with a stride of 1 along all other axes (Figure 6.27).

Striding operations must treat one special case, the case in which all stride vectors have
value 1 for all components. In this case, the operation reduces to the associated offset
operation. Otherwise, the appropriate nested loop is employed.

An important point regarding special cases is that they can be pseudo-recursively defined.
In the case described above, in which all strides are 1, the call to the associated offset
operation may determine that the operation is to be performed over the entirety of operands
of identical size and shape. In this case, the offset operation would itself call a special case,
namely the contiguous operation, which would in turn call the associated operation on a

List.

6.2.4.4 Marginal Operations

Marginal operations reduce a full d-dimensional spatial operand to a (d — k)-dimensional
operand, based on the axis set of the destination operand. Necessarily, therefore, all marginal
operations are reductions. A common example of a marginal operation is obtaining the count
of the instances of selection flags that are set along a particular slice plane (Figure 6.28),
an operation that plays a critical role in clustering, since this operation determines the
signatures.

Marginal operations take one set of offset arguments, rather than one for each operand,
but take an axis set for each operand, since the axis set describes the polytope (e.g., line,

plane) that the operand represents. Specifically, the destination axis set must be a (not

182

Void RealField_striding_copy (

{

RealField dstrealfield, RealField srcrealfield,

AxisSet axisset, Staggering dststaggering, Staggering srcstaggering,
IntegerVector dstaxisloci, IntegerVector srcaxisloci,

IntegerVector size, IndexPoint dststart, IndexPoint srcstart,
IntegerVector dststride, IntegerVector srcstride, Integer axes)

switch (axes) { ...

case 2:
dstartl = dststart[0]; sstartl = srcstart[0]; sizel = size[0];
dstridel = dststride[0]; sstridel = srcstridel0];
dall = dstaxislocil[0]; sall = srcaxislocil[0];
dstart2 = dststart[1]; sstart2 = srcstart[1]; size2 = size[1];
dstride2 = dststride[1]; sstride2 = srcstridel1];
for (a2 = 0; a2 < size2; a2++)
for (al = 0; al < sizel; al++)
dstrealfield
[al*dstridel+dstartl + dall*(a2*dstride2+dstart2)] =
srcrealfield

+}

[al*sstridel+sstartl + sallx(a2*sstride2+sstart2)];
break;

Figure 6.27: Striding copy

183

S-S I NCR VG [T VS SO (i

Void BooleanField _marginal_instances_of_true (
IntegerField dstintegerfield, BooleanField srcbooleanfield,
AxisSet dstaxisset, AxisSet srcaxisset, Staggering staggering,
IntegerVector axisloci, IntegerVector size, IndexPoint start,
Integer axes)

{ ...
switch (axes) {
case 2:
startl = start[0]; sizel = sizel[0]; all = axislocil0];
start2 = start[1]; size2 = sizel[1];

switch (dstaxisset) {
case 01b:
for (a2 = 0; a2 < size2; a2++)
for (al = 0; al < sizel; al++)
if (srcbooleanfield[al+startl + alil*x(a2+start2)])
dstintegerfield[al+startl]++;
break;
case 10b:
for (a2 = 0; a2 < size2; a2++)
for (al = 0; al < sizel; al++)
if (srcbooleanfield[al+startl + alil*x(a2+start2)])
dstintegerfield[a2+start2]++;
break;
}

break;

+}

Figure 6.28: Marginal instances of true

184

necessarily proper) subset of the source axis set. Thus, the destination operand has the
shape of an appropriate subsurface of the source operand.

The special cases that marginal operations address separately from the general case are
the cases of an empty destination axis set, which indicates a full reduction of the region of
interest to a single scalar, and the case of identical source and destination axis sets, which
indicates that the operation does not reduce, but rather simply examines the value at each
locus. For example, in the case of the marginal count of the number of instances of boolean
flags that are set, the empty axis set case would count the total number of flags that are set,
and the complete axis set case would assign a 1 for every flag that is set and a zero for every

flag that is clear.

6.2.4.5 Incremental Operations

Like their marginal counterparts, incremental operations are also all reductions; specifically,
they reduce the loci surrounding a locus to a value on the locus. A common example of
an incremental operation is an examination of a field of boolean flags to determine whether
any of the surrounding flags (including the flag that is surrounded) are set (Figure 6.29).
This operation is employed during selection, to expand the selected region by the size of the
buffer region and any child boundaries needed.

Like marginal operations, incremental operations take one set of offset arguments, rather
than one for each operand, so all operands have identical shape. They also take an increment

argument, which describes the neighborhood surrounding each locus.

185

Src

dst

Incremental Stencil

Void BooleanField_incremental_any_true (
BooleanField dstbooleanfield, BooleanField srcbooleanfield,
AxisSet axisset, Staggering staggering,
IntegerVector axisloci, IntegerVector size, IndexPoint start,
IntegerStencil increment, Integer axes)

{ ...
switch (axes) {
case 2:
incminl = increment[0][0]; incmaxl = increment[0][1];
all = axisloci[0]; sizel = size[0]; startl = start[0];
incmin2 = increment[1][0]; incmax2 = increment[1][1];
al2 = axislocil[l]; size2 = sizel[l1]; start2 = start[1];
for (i2 = incmin2; i2 <= incmax2; i2++)
for (i1 = incminl; il <= incmaxl; il1++)
BooleanField_offset_oxr(
dstbooleanfield, dstbooleanfield, srcbooleanfield,
axisset, staggering, staggering, staggering,
axisloci, axisloci, axisloci,
incsize, incdststart, incdststart, incstart, axes);
break;
}

Figure 6.29: Incremental check of whether any surrounding flags are true

186

for (i1 = incminl,
incdststart[0] = (((startl+incminl) < 0) ? 0 : startil+incminl),
incstart[0] =
(((startl+incminl) < 0) ? startl-incminl : startil),
incsizel[0] =
(((startl+incminl) < 0) 7 sizel+startl+incminl :
((sizel+startl+incminl) > all) 7
sizel-(startl+incminl) : sizel);
i1l <= incmaxl; i1++,
incdststart[0] = (((starti+il) < 0) ? 0 : (starti+il)),
incstart[0] = (((start1+il) < 0) ? (startil-il1) : startil),
incsizel[0] =
(((startl+il) < 0) 7 (sizel+starti+il)
((sizel+startl+il) > all) 7?7 sizel-(startli+il) : sizel))

Figure 6.30: Incremental loop with coverage guarantees

The special case that incremental operations address separately from the general case
is the case of an increment whose entries are all zero. In this case, the operation reduces
to the same simple operation as the identical axis sets case of the corresponding marginal

operation.

Regarding the incremental loops: in fact, they are considerably more complicated than
depicted in Figure 6.29. The complication arises because the increment may actually leak
off the edge of the operand, in which case the operation would draw its source values from
random memory addresses. To combat this problem, checks and adjustments are incorpo-
rated into the loop declaration (Figure 6.30). Essentially, these checks guarantee that the
incremental region begins and ends inside the operand, and that the incremental size is

appropriately adjusted if the incremental region must be truncated on either side.

187

Src

dst

Figure 6.31: Injection interpolation

6.2.4.6 Injection Operations

Injection operations obtain a finer result from coarser input. A common example of an injec-
tion operation is interpolation from a coarse to a fine grid (Figure 6.31). Injection operations
take a set of offset arguments for each operand, as well as a refinement factor, and an origin
point for each grid. The origins are employed to determine which coarse cell corresponds to

each fine cell, though this issue typically arises only in the case of interpolations.

The special case that injection operations address separately from the general case is the
case of a refinement factor whose entries are all one. In this case, the corresponding offset

operation is applied.

188

Unary and interpolation injection operations have a single form, which corresponds to a
coarse source operand and a fine destination operand. Binary injection operations, on the
other hand, come in three forms, depending on which of the source operands is coarse: the
first source operand, the second, or both. For example, consider the standard correction
algorithm. During correction, the postcorrection operand, which has the finer resolution, is
subtracted from the coarser precorrection operand, and the result goes into the postcorrection

operand (Figure 6.32).

6.2.4.7 Projection Operations

Projection operations transfer information from finer to coarser operands, typically by re-
duction of the values on the fine loci that overlay a coarse locus. A common example of
a projection operation is the determination of whether any of the flags in a set of fine loci
are set, and mapping the result to the associated coarse locus (depicted in Figure 6.33, with
code fragment in Figure 6.34), such as would be used in projecting the selection flags of a
fine grid onto its coarser parent.

Projection operations take a set of offset arguments for each operand, except for the
staggering, which is the same for all. The staggering determines which axes to reduce along;
specifically, reduction only occurs along axes that are centered, rather than on the mesh
lines.

The special case that projection operations addresses separately from the general case is

the case of a refinement factor whose components are all one, in which case the operation

189

Void RealField_injection_from_first_subtract (
RealField dstrealfield,
RealField srcrealfieldl, RealField srcrealfield2,
AxisSet axisset,
Staggering dststaggering,
Staggering srcstaggeringl, Staggering srcstaggering?2,
IntegerVector dstaxisloci,
IntegerVector srcaxislocil, IntegerVector srcaxisloci2,
IntegerVector size,
IndexPoint dststart,
IndexPoint srcstartl, IndexPoint srcstart2,
IndexPoint dstorigin,
IndexPoint srcoriginl, IndexPoint srcorigin2,
IntegerVector refinement_factor, Integer axes)

{

switch (axes) {

case 2:
dstartl = dststart[0]; slstartl = srcstarti[0];
doriginl = dstorigin[0]; sloriginl = srcoriginl[0];
sizel = size[0]; refl = refinement_factor[0];
dall = dstaxislocil[0]; slall = srcaxislocil[0];
dstart2 = dststart[1]; slstart2 = srcstarti[1];
dorigin2 = dstorigin[1]; slorigin2 = srcorigini[1];
size2 = size[1]; ref2 = refinement_factor[1l];
for (a2 = 0; a2 < size2; a2++)
for (al = 0; al < sizel; al++)
dstrealfield[al+dstartl + dalil*(a2+dstart2)] =
srcrealfieldl[al/refl+sistartl + slalil*x(a2/ref2+slistart2)] -
dstrealfield[al+dstartl + dall*(a2+dstart2)];
break;

Figure 6.32: Injection subtraction with coarse minuend

190

dst

Src

Figure 6.33: Projection any true

is reduced to a related offset operation; for example, the projection “any true” operation is
simplified to an offset copy, because it projects only a single “fine” boolean onto the coarse

boolean.

6.2.5 Summary

The HAMR function library is large and extensive, covering a great many cases for each
operation. While a typical application may utilize many of the functions in the library, the
overwhelming majority go unused. However, predicting the specific computational needs of
a particular application a priori can be difficult, so the design decision that most obviously
addresses the wide range of potential requirements incorporates as many combinations of

circumstances as possible. As a result, the design and implementation of the library required

191

Void BooleanField_projection_any_true (
BooleanField dstbooleanfield, BooleanField srcbooleanfield,
AxisSet axisset, Staggering staggering,
IntegerVector dstaxisloci, IntegerVector srcaxisloci,
IntegerVector size, IndexPoint dststart, IndexPoint srcstart,
IndexPoint dstorigin, IndexPoint srcorigin,
IntegerVector refinement_factor, Integer axes)

switch (axes) {

case 2:

dstartl = dststart[0]; sstartl = srcstart[0];

doriginl = dstorigin[0]; soriginil = srcorigin[0];

sizel = size[0]; refl = refinement_factor[0];

reflenl = Staggering_axis_offset_from_center(staggering,O,axes) ?

refl : 1;

dall = dstaxislocil[0]; sall = srcaxislocil[0];

dstart2 = dststart[1]; sstart2 = srcstart[1];

dorigin2 = dstorigin[1]; sorigin2 = srcorigin[1];

size2 = size[1]; ref2 = refinement_factor[1l];

reflen?2 Staggering_axis_offset_from_center(staggering,1,axes) e
ref2 : 1;
for (r2 = 0; r2 < reflen2; r2++)
for (r1 = 0; rl < reflenl; ri++)
for (a2 = 0; a2 < size2; a2++)
for (al = 0; al < sizel; al++)
dstbooleanfield[al+dstartl + dalil*(a2+dstart2)] =
dstbooleanfield[al+dstartl + dall*(a2+dstart2)] ||
srcbooleanfield

[al*refl+sstartli+rl + sall*(a2*ref2+sstart2+r2)];

Figure 6.34: Projection any true code

192

more than a year of programming and testing effort, an effort which, at the time, yielded no
tangible results, since the library itself had relatively little value outside the context of an

AMR system.

However, this task proved well-chosen. Not only did the flexibility of the library ease
the programming burden of the rest of the system, it also simplified extending the library
when unanticipated needs arose. For example, the need for striding operations was not
clear until implementation of the AMR algorithms. At that time, however, the intrinsic
properties of the library’s design considerably simplified the process of incorporating the
striding operations, which included all operation categories. Thus this new set of operations
was designed, implemented and tested in a single week.

Ultimately, however, the primary advantage of this library design paradigm is in each
function’s encapsulation of a wide range of potential circumstances. This approach simplifies

the construction of general-purpose algorithms, and thus is ideal for a system like HAMR.

6.3 HAMR Autonomous Grid Hierarchy Management

HAMR provides autonomous data management by the means described in Chapter 5, with
sufficient functionality to create, copy and delete data structures, and to execute methods on
the structures. While the description of the data management paradigm in Chapter 5 was top
down, progressing from the gross structure of the data to the finer details, this description will

be bottom up, beginning with the declaration that the application scientist writes, the parser

193

which converts the user-generated declaration to machine-readable form, the declaration data
structure, the specification, the HAMR data structure, data item macros, and predefined

data items.

6.3.1 HAMR Declaration

To implement the declaration concepts described in Section 5.4, HAMR provides a simple
declaration language, and a parser to convert the information into a form accessible by the
specification. The overall declaration is composed of a set of module declarations, each of
which declares the attributes of the module, as well as all of the data items associated with
the module.

The declaration language itself is arbitrary; that is, its approach to syntax is one of many
possibilities. In this case, the syntax is a combination of C and Pascal conventions. However,
what matters in this case is not the particulars of the syntax, but rather the data, methods

and relationships the declaration language can express.

6.3.1.1 Module Header Declarations

Consider the standard controller, shown in Figure 6.35. The module declaration begins
with a keyword, Controller, which indicates the module type, followed by the name of the
module, standard controller. The parentheses after the module name indicate that it
corresponds to a function, whose name is obtained by concatenating the stratum associated

with the module type — which in the case of a control algorithm is the hierarchy — with

194

Controller standard controller();
Integer root timesteps:

Hierarchy, Initialize root timesteps initialize method;
VoidMethod root timesteps initialize method:

Fixed, Archetype root timesteps, Value root timesteps initialize;

Void root timesteps initialize(): Hierarchy.

Figure 6.35: Module declaration

Void Hierarchy_standard_controller (Hierarchy hier)
{ Index t;
for (t = 0; t < Hierarchy_root_timesteps(hier); t++)
Level_integrator_method_execute(Hierarchy_level(hier) [ROOT]); }

Figure 6.36: Standard controller function (simplified)

the module name. Thus, Hierarchy_standard_controller (Figure 6.36) is the function
associated with the module standard controller.

Module declarations can take on two other forms. First, the module can have no cor-
responding function (Figure 6.37). This case is identical to the previous case, except that

the function associated with the module is empty — or more accurately, is a pointer to the

Selector slope selector;

Real epsilon: Hierarchy, Value 0.001;
Real threshold: Hierarchy, Value 0.200;

Void slope select(): Grid.

Figure 6.37: Module declaration with no corresponding function

195

Generic Cluster cluster;
IndexRegionlist cluster: Level, Temporary, Axes Space, Elements clusters;
Integer clusters: Level, Value 0;
Real minimum cluster efficiency:

Level, Initialize minimum cluster efficiency initialize method;
Integer minimum cluster cells along any axis:

Fixed, Initialize minimum cluster cells along any axis initialize method;
Integer maximum cluster cells along any axis:

Level, Initialize maximum cluster cells along any axis initialize method;

Integer maximum cluster cells:
Level, Initialize maximum cluster cells initialize method;

Figure 6.38: Generic cluster declaration

Solver CMHOG Euler solve():
CoordinateSystem CARTESIAN1D CARTESIAN2D CARTESIAN3D, Mesh ISOTROPIC;

Figure 6.39: Solver declaration on isotropic Cartesian meshes

empty function Void_do_nothing. The other form that a module declaration can take is a
generic module, which is a module that is always active and that has no associated function.
For example, every clustering algorithm requires certain parameters, such as the clustering
efficiency (Figure 6.38). Since these parameters are common, they can be encapsulated in
a single module, which is always active, and so the module’s data items are available to all

clustering algorithms.

In addition to module type, name and function attributes, non-generic modules can
have attributes that determine whether they are active. Specifically, a module can be tied

to a particular subset of ranks, coordinate systems and mesh types (Figure 6.39). If the

196

rank, coordinate system and mesh type are not among those declared, then the module
is automatically deactivated. For example, a solver may be applicable only to isotropic
Cartesian meshes in one and two dimensions, so if the mesh has polar coordinates, the solver
is automatically deactivated. If no such attributes are declared, then by default the module

is active for all cases.

6.3.1.2 Data Item Declarations

Subsequent to the declaration of the module header, the module contains declarations for
the individual data items. The module in Figure 6.35 has two data items: root timesteps,
an integer scalar that is encapsulated by the hierarchy and that describes the number of
timesteps that the control algorithm will perform at the root level, and root timesteps

initialize method, which is a method that initializes the value of root timesteps:

VoidMethod root timesteps initialize method:
Fixed, Archetype root timesteps, Value root timesteps initialize;

Finally, the last declaration in the module is

Void root timesteps initialize(): Hierarchy.

This declaration is a function prototype rather than a data item. It indicates that the
function value of the method root timesteps initialize method operates on the hierarchy;

that is, the function associated with the value root timesteps initialize is

197

Hierarchy_root_timesteps_initialize

This example illustrates an important point: the stratum on which a method is stored is
not necessarily the stratum on which its function values operate. Here, the method — that
is, the data item containing the function pointer — is stored on the fixed data structure, but
the function pointed to by the method operates on the hierarchy. A more potent example of
this principle is the case of an injection routine, which is the same for all grids on the same
level, and is therefore stored on the level data structure, but which is applied to individual
grids (Figure 6.40).

Data item declarations generally take on a simple form:

<data-type> <data-item-name>: <stratum>, <permanence>, <attribute-list>;

Here, a <data-type> is any of the valid data types described in Section 6.1, <data-item-
name> is an identifier, the <stratum> is the one that encapsulates the data item, and the

<attribute-list> depends on the data type.

6.3.1.3 Structured Data Declarations

Structured data item declarations (Figure 6.41) have attribute lists that explicitly identify
their structural attributes. For example, an ArrayListBox declaration includes the number
of arrays, the number of lists per array and the number of elements per list. The one exception
to this rule arises in the case that the structured data type has dimensions of varying sizes

— that is, in the case of Array, ArraylList and ArrayArray types. For these types, the

198

Level 1
Data

PPM field inject

Grid_linear conservative monotonic_interpolate

Level 2
Data

PPM field inject

Grid_cubic _conservativemonotonic_interpolate

VoidMethod PPM field inject: Level,
Value linear conservative monotonic interpolate,
Value cubic conservative monotonic interpolate;
Void linear conservative monotonic interpolate(): Grid;
Void cubic conservative monotonic interpolate(): Grid;

Figure 6.40: Injection declaration

199

Integer grids: Level;
Integer time levels:

Hierarchy, Value 2;
Reallist relative time:

Level, Permanent, Elements time levels;
IntegerList parents per grid:

Level, Permanent, Elements grids;
IntegerArray boundary regions per parent:

Level, Permanent, Elements parents per grid;
RealArraylList boundary region physical domain:

Level, Permanent, Elements boundary regions per parent;
IndexRegionArrayBox boundary in exterior:

Grid, Enduring, Lists axes, Elements extrema;
IndexRegionArraylListBox grid boundary in domain:

Level, Temporary, Arrays grids, Lists axes, Elements extrema;

Figure 6.41: Structured data item declarations

only structural attribute that must be explicitly declared is the number of elements, because
that attribute will itself be a reference to a structured data item, and so it will inherit
its referent’s less complex structural attributes. For example, an ArrayArray will have
as its Elements attribute a reference to an IntegerArrayList, which in turn has as its
Elements attribute a reference to an IntegerArray, and so on. The Elements attribute of
the IntegerArrayList is inherited by the ArrayArray as its Lists attribute, the Elements
attribute of the IntegerArray is inherited by the IntegerArrayList as its Lists attribute

and therefore by the ArrayArray as its Arrays attribute, and so on.

6.3.1.4 Dimensional Data Declarations

Dimensional data declarations (Figure 6.42) have attributes that describe the structural

200

RealAxisDescription node position:

Level, Permanent, AxisStaggering Node, Stencil mesh stencil;
RealAxisContribution contribution: Injection,

Increment linear increment, Contributors linear contributors;

Figure 6.42: Dimensional data item declarations

properties along each axis. In the case of AxisDescription declarations, one of the at-
tributes, the Stencil, is optional: if there is no attribute declared, then the stencil is empty
by default, which means that the length along each axis will be the size of the interior of the
computational domain of the encapsulating level. The AxisContribution case, however,
is a bit more complex. In the first place, all AxisContribution data items are encapsu-
lated in levels, and all are permanent, so declaring the stratum and permanence would be
superfluous. Also, AxisContribution data items have some unique attributes, namely the
relationship between the levels that the interpolation is performed on (that is, injection or
projection), the increment of the source loci surrounding the destination locus, and the num-
ber of contributors, which is to say the number of functions on the solution at the loci that

contribute to the interpolated value.

6.3.1.5 Spatial Data Declarations

Spatial declarations (Figure 6.43) have by far the greatest number of attributes. These
attributes include not only stratum and permanence, but also structural attributes such as
axis set and staggering, variform structural attributes such as stencil and relative time list,

set information such as member names, and functional attributes, both data and methods.

201

Real SpacetimeVariableSet PPM field: Grid, Permanent,
AxisSet AxisSet_all_axes(Space),
Staggering Staggering_cell_center(Space),
Stencil PPM field space stencil, Time PPM field time,
Member density, Member energy, Member u, Member v, Member w,
Precorrection PPM field parent flux correction,
Postcorrection PPM field filial flux correction sum,
Selection PPM field selected,
Initialize PPM field initialize method,
Inject PPM field inject method,
Project PPM field project method,
Extrapolate PPM field extrapolate method,
Correct standard correct method,
Select PPM field select method;

Figure 6.43: Spatial data item declaration

Only the first four attributes (or the rank attribute, for Maximal sets), are required; all
of the other attributes are optional. (In principle, only first two attributes are absolutely
necessary, since defaults could be chosen for the rank, axis set and staggering attributes.)
For example, if no stencil is declared, then the size of the data item is the size of the
computational interior of the grid; in other words, the data item has no ghost boundary. If
no member names are declared, then the set has one member whose name is the same as the
name of the data item. Alternatively, the set could have a Members attribute, with an integer
value that determines the number of members of the set; this approach is especially useful
for declaring a set of multipurpose temporary variables. Finally, any missing functional
data attributes correspond to null pointers, and any missing functional method attributes

correspond to empty functions.

202

VoidMethod PPM field inject method:
Level, Archetype PPM field,
Value CMHOG inject from coarser;
Void CMHOG inject from coarser():
Grid;
VoidSetMethod PPM field extrapolate method:
Level, Archetype PPM field,
Member u, Value standard member reflected boundary axisl velocity negate,
Member v, Value standard member reflected boundary axis2 velocity negate,
Member w, Value standard member reflected boundary axis3 velocity negate;
Void standard member reflected boundary axisl velocity negate(): Grid;
Void standard member reflected boundary axis2 velocity negate(): Grid;
Void standard member reflected boundary axis3 velocity negate(): Grid;

Figure 6.44: Method data item declarations

6.3.1.6 Method Declarations

Method declarations (Figure 6.44) typically require at least one attribute other than stratum,
namely the value(s). In the case of a Method, this attribute is the only required attribute,
but for a SetMethod, an archetype attribute is also required, as well as member attributes,
whose purpose is to map the members of the method to the members of the archetypal

spatial set.

The number of method value attributes is arbitrary, because a method can refer to any
number of different possible functions, as shown in Figure 6.40. In the case of a SetMethod
declaration, the order of the attributes indicates which method values are associated with
each member; that is, the Value attributes following each Member attribute indicate the

function values associated with that member.

203

6.3.2 HAMR Declaration Parser

The HAMR declaration language is implemented by a parser, which is a preprocessor that

converts the declaration into a form that the specification management software can use.
The actual parsing — that is, the conversion from the declaration language to an internal

representation — is fairly trivial: aside from the data item headers themselves and the

stratum and permanence declarations, the attributes typically have the form

<keyword> <value>

a form which lends itself to fairly straightforward parsing.

The parsing step is implemented by a loop containing a simple switch statement. When
a module is parsed, its module declaration is stored, and after each data item declaration
(including attributes) is parsed, the item’s name and attribute values are stored in a queue
of data items. After all the data items in the module are parsed, the queue is converted into
a static module representation, which is then inserted into a queue of modules. When all
the modules have been parsed, this queue is converted into a static list of data items, each
tagged with its module’s identifier.

Within a declaration, identifiers such as data item names can be expressed in either of two
forms: as delimited strings or without delimiters. In the former case, the identifier can be
a collection of any (non-quote) characters delimited by double quotes, including characters
that play a specific role in the declaration syntax, such as parentheses, colons, commas,

semicolons and periods. In the latter case, the identifier can contain any characters except

204

Declaration: "This is the name of a (silly) data item:"

Name: This is the name of a (silly) data item:
Token: This_is_the_name_of_a_silly_data_item
Comparison: THISISTHENAMEOFASILLYDATAITEM

Figure 6.45: Identifier representations

the special characters listed, and the identifier is terminated by the colon.

Once the complete set of data items has been obtained, implicit information can be
derived. First, alternative forms of each data item and member name are obtained. The
parser represents such identifiers in three ways: in their original form as laid out in the
declaration, as C-like identifiers consisting of alphanumeric characters and underscores, and
as alphanumeric strings, all upper case, used for comparisons (Figure 6.45). Multiple copies
of the latter two forms are generated, one based on just the data item name and one that
concatenates the module name and the data item name, in order to disambiguate in the
event that there are multiple data items with the same name — for example, in the case of
the referents of variform attributes — or multiple sets with the same member names. (In
the case of member names, three versions are generated: the original, the concatenation of
the data item name and the member name, and the concatenation of the module name, data
item name and member name.) Next, all attribute references are resolved, by comparing the
value of each attribute to the names of all data items or members of the appropriate types.
(An unresolvable reference causes the parser to terminate with an error report.) Third,
reciprocal attributes are determined: for each reciprocal attribute of a data item, all data

items of the appropriate types are examined to determine whether the reciprocated attribute

205

refers to the reciprocating data item. Finally, the results of the parse are output. All of the

results of the parse take the form of C macros, forming several categories:

e number of data items;

e data item indices;

e attribute macros for attributes that are based on the rank of the domain;

e macros associating the data items with fields of appropriate data structure;

e declaration lists.

The first three categories are straightforward; for example,

#define GRID_BOOLEAN_SPACEPARAMETERSETS 3
#define OVERALL_SELECTION_INDEX 0
#define Grid_Boolean_SpaceParameterSet_staggering(i,rank) \
(i == OVERALL_SELECTION_INDEX) 7 Staggering_center(rank)

The field macros provide a clean programming interface to data items, but they are a bit

more complicated; for example

#define Grid_overall_selection(grid) \
Grid_Boolean_SpaceParameterSet (grid) [OVERALL_SELECTION_INDEX]

Finally, the declaration lists provide the link from the declaration to the specification,
since these lists contain the values of the various attributes of the data items. For example,

consider the list of names of BooleanSpaceParameterSet data items. This list might be

defined as

206

#define GRID_BOOLEAN_SPACEPARAMETERSET_NAME \
{ "overall selection", "PPM field selection", "gravity selection" }

Other lists can be similarly defined, not only lists of scalars and strings but also lists of

function pointers:

#define FIXED_VOID_METHOD_VALUE \
{ Grid_iteml_initialize, Grid_item2_initialize, ... }

6.3.3 HAMR Declaration Data Structure

The declaration lists produced by the parser provide a powerful means of supplying the
declaration information to the specification, using a feature of the C language that is rarely
exploited to its full potential. Specifically, the C language allows dimensioned arrays of
scalars, pointers or strings to be initialized with predefined lists.

For example, consider the name list macro defined in Section 6.3.2. This list can be used

as the initialization list for a statically dimensioned list of strings:

static String Grid_Boolean_SpaceParameterSet_name]
GRID_BOOLEAN_SPACEPARAMETERSET_NAME;

which the C preprocessor converts to

static String Grid_Boolean_SpaceParameterSet_name]
{ "overall selection", "PPM field selection", "gravity selection" };

When the C compiler parses this declaration, it constructs a static array of the appropriate

size in memory, which contains the appropriate values.

207

In this manner, the values of all of the declaration lists are automatically declared as
static arrays that are global with respect to the object file that contains them, and hidden
from the functions in all other object files. In fact, preprocessor directives guarantee the

declaration of only the minimal collection of such static arrays:

#ifdef GRID_BOOLEAN_SPACEPARAMETERSET_NAME

static String Grid_Boolean_SpaceParameterSet_name] =
GRID_BOOLEAN_SPACEPARAMETERSET_NAME;

#endif /* #ifdef GRID_BOOLEAN_SPACEPARAMETERSET_NAME */

An important advantage of this approach is that function pointers can be initialized in

this manner, just as if they were scalars:

static VoidMethod Fixed_Void_Method_valuel[] =
{ Grid_shock_tube_initialize, Grid_comet_initialize };

To the parser, these function names are simply strings constructed while parsing the decla-
ration; to the compiler, they refer to specific, existing functions, whose addresses are loaded
into this convenient predimensioned list.

This arrangement also illustrates the reason that the parsing algorithm must be separate
from HAMR itself: if the parser were activated at run time rather than before compile
time, it would be unable to convert the strings in method declarations into actual function
pointers, because there would be no platform-independent means of determining the function
that matched the string — and even a platform-dependent approach would be likely to be
unacceptably cumbersome. If the parser is a preprocessing step, however, this determination

is not required, because the parser considers all of these results to be strings to be output,

208

and 1t is not in a position to know that the output it creates will be used as macro definitions,
from which the compiler will construct the static lists. Thus, the C preprocessor and the
compiler combine to perform the task of determining the method values’ function pointers,
a task that would be at best extremely difficult to code explicitly, but that is trivial when
addressed in this manner. In fact, this kind of software engineering approach drove much of
the development of HAMR, because one means of achieving portability is to take advantage
of a small number of either commonly-available or homegrown filters.

To make the declaration lists available outside the object file in which they are defined,
HAMR provides a declaration data structure (Figure 6.46), which is essentially a collection
of pointers that are set to point to the appropriate static list (Figure 6.47), or are null in
the case that no appropriate list exists. The routine that sets the pointers is in the same
object file as the lists themselves, and so the lists need not be accessed by any other routine.
In fact, the object file that contains the static lists contains only the functions to set the

declaration structure’s pointers to the appropriate static lists.

6.3.4 HAMR Specification

The process of constructing the HAMR specification (Figure 6.48) is divided into several

steps, which are variously performed by:

o the application designer;

e special-purpose preprocessors;

209

Declaration

KindsDeclarationStructure

ModuleDeclarationStructure

kinds_data_structure

[GRID] [REAL] [SPACEPARAMETERSET]

V

ParameterDeclaration

name_declaration_structure

permanence declaration structure
resolution_declaration structure

spatial declaration_structure

! resolution_declaration_structure

spatial resolution

temporal resolution

parent local local

local

static

modules
module_type

module_is_generic

module_is_active
module name
module meshes
module _coordinate systems
module methods
module mesh
module coordinate system
module _coordinate systemdimension
module method
module method name

module method function name

TRUE FALSE FALSE

static

Figure 6.46: Declaration structure

210

#ifdef GRID_BOOLEAN_SPACEPARAMETERSETS
if TypeParameterType_has_name(BOOLEAN,SPACEPARAMETERSET)
if (Declaration_parameter_declaration(
decl,GRID,BOOLEAN, SPACEPARAMETERSET) !=
(ParameterDeclaration)NULL) {
ifdef GRID_BOOLEAN_SPACEPARAMETERSET_NAME
Declaration_name(decl,GRID,BO0OLEAN,SPACEPARAMETERSET) =
(StringList)SystemLevel_Type_ParameterType_name;
endif /* #ifdef GRID_BOOLEAN_SPACEPARAMETERSET_NAME */
} /* if Declaration_parameter_declaration */
endif /* #if TypeParameterType_has_name */
#endif /* #ifdef GRID_BOOLEAN_SPACEPARAMETERSETS */

Figure 6.47: Setting a pointer on the declaration structure

o the standard C preprocessor;

o the C compiler;

o the resulting executables that the compiler produces.

The first two steps, that of designing the declaration and parsing it, are performed as de-
scribed in Sections 6.3.1 and 6.3.2, by the application designer and by the parser, respectively;
the result is several header files containing the set of macro definitions that describe the dec-
larations. In addition, the functions that implement both the standard AMR algorithms
and the application algorithms are passed through a filter that extracts C function headers
and converts them to prototypes, producing additional header files. Next, the source code
for the functions that build the declaration data structure and assign pointers to the static
declaration lists is compiled, as is the associated set of functions for building the specification

from the declaration data structure.

211

Data and Predefined Application Declaration Specification

Method Algorithm Algorithm Builder Builder
Declarations Source Source Source Source

Source to
Prototype
Filter

Source to
Prototype
Filter

Declaration Predefined Application
List Macro Algorithm Algorithm
Definitions Prototypes Prototypes

N

Declaration
Builder create declarations
with -
global static
declaration lists

Specification
Builder

Declaration

copy declarations

data structure

Specification

data structure

Figure 6.48: Building a specification

212

When a HAMR application is run, its first task is to build the specification, which is
achieved by building the declaration data structure, and then copying each of the static
declaration lists into a dynamically allocated instance of an appropriate data type, which
not only contains all of the appropriate information, but also provides conveniently indexed
access to its values (Figure 6.49). Thus, the HAMR specification has essentially the same
design as the declaration structure, but instead of mere pointers to existing static lists, the
specification contains its own copies of the lists, which need not be lists themselves; that
is, they can be more complex structured types such as Arrays and ArrayLists. However,
HAMR structured types are allocated contiguously, so the values of the specification arrays
can be directly copied from the static lists that the declaration structure points to, simply
by dereferencing the more complex structures down to contiguous lists, in much the same
manner as operations performed on complex structured types. Once the specification has
been built via these copies, the declaration data structure can be discarded, and the static
declaration lists, which consume a trivial amount of memory even for the most complicated
sets of declarations, are thereafter ignored.

The specification is divided into two main sections, one which is indexed by module and
one that is indexed by data item. It also contains a few additional attributes that describe
geometric properties of the overall domain: the rank, mesh type and coordinate system.

The section that is indexed by module includes the number of modules, and the following

module attributes for each module:

e the module type;

213

static Grid Boolean SpaceParameterSet name

‘‘overall select

ed??’

¢‘PPM field selected’’

‘‘expanded overall selected’’

S I

1

5

Declaration

static Grid Boolean SpaceParameterSet original member names

static Grid_Boolean SpaceParameterSet original member_name

‘‘overall select

ed??’

‘fdensity’?

(34

u’?’

‘‘expanded overall selected’’

‘‘energy’’

+—>

‘‘overall select

ed??’

¢‘PPM field selected’’

‘‘expanded overall selected’’

N EE— 1

1

5

Specificat

Clg2

(34

v??

Specificationname(spec,GRID,BOOLEAN,SPACEPARAMETERSET)

Specification

Specification original member names(spec,GRID,BOOLEAN, SPACEPARAMETERSET)

ion original member name(spec,GRID,BOOLEAN,SPACEPARAMETERSET)

‘‘overall select

ed??’

‘fdensity’?

(34

u’?’

‘‘expanded overall selected’’

‘‘energy’’

llej

(34

v??

Specification original member name(spec,GRID,BOOLEAN,SPACEPARAMETERSET) [item] [member]

Figure 6.49: Declaration and specification versions of set member information

214

e the module name;

e the module function pointer, and the name of the module function;

o flags for whether the module is generic and whether it is active;

e the list of meshes under which the module is active, and the number of such meshes;

e the list of coordinate systems under which the module is active, and the number of

such coordinate systems;

e the list of ranks of the coordinate systems under which the module is active.

Essentially, these attributes simply identify the module and the circumstances under which
it 1s active.
As for the section indexed by data item, it contains considerably more attributes, includ-

ing:

e the data item name;

e the module that contains the data item;

e the permanence;

e the spatial and temporal resolution;

e the list of initial or potential values the data item or its members can take on, and the

number of such values;

215

e spatial attributes such as axis set and staggering;

e information about the names of set members;

o the referential attributes of the data item, including the structural attributes of struc-

tured types, the set archetype, and functional data and method attributes;

e the variform referential attributes, such as stencil and relative time list;

e the reciprocal attributes for all of the referential attributes, both uniform and variform.

Referential attribute information is coded as three enumerated entries — the stratum,
the element type and the parameter type — and one index, which indicates the particular
data item of the stratiform type. This approach has the advantage that the specification can
fully code all references, without having any access to the data structures that contain the
data items that the coded references describe, let alone to the data items themselves. Thus,
any part of the overall data structure can learn about any of the referential relationships

between data items, regardless of whether it can access the referers or referents.

6.3.5 The HAMR Data Structure

The HAMR data structure is an implementation of the data structure described in Section
5.1, comprising all of the parts shown in Figure 5.4. For each stratum, HAMR defines two
data structures: the stratum itself, and the structure of stratum data. For example, the two

hierarchy data structures are Hierarchy and HierarchyData. While the stratum structures

216

are quite simple — essentially just a few pointers — the structures of stratum data are far

more complicated.

Each structure of stratum data consists of two major parts: a set of pointers to lists of
data items, one for each data type, and a structure of attribute appendices (Figure 6.50).
Essentially, the structure of stratum data provides a hierarchical collection of slots that can
be filled according to the needs asserted by the specification. For the data items themselves,
the higher level slot is a framework — a list of pointers to instances of the appropriate data
type — that is created when the structure itself is created, and whose length is determined
by the appropriate entry in the specification. The lower level slots are the individual pointers
— that is, the elements of the data type pointer list — that are filled on demand, according
to both the extent categories of the data items and the needs of the algorithms that operate
on the data structure. In contrast, the attribute appendix structure is an array of pointers
to appendices, rather than a set of individual slots, but it is also filled on demand. The
advantage of this arrangement of appendices is that it allows all appendix operations to
be generic with respect to the data type that the appendix describes, as opposed to the
operations on the data items (or their slots) themselves, each of which is specific to an
individual data type.

So, on each structure of stratum data, every data type is represented by two pointers,
one to a list of slots that hold instances of the type, and one to a list of slots that hold
appendices that describe the instances of the type. More precisely, the cost is one pointer for

each existing data type, and one pointer for each combination of element type and parameter

217

GridDataStructure

GridParameterStructure GridAppendicesStructure

- GridParameterStructure

GridSingleParameterStructure
GridListParameterStructure
GridArrayParameterStructure
GridArrayBoxParameterStructure
GridArrayListParameterStructure
GridArrayListBoxParameterStructure
GridArrayArrayParameterStructure
GridArray ArrayBoxParameterStructure

GridQueueParameterStructure
GridSpaceParameterSetParameterStructure
GridSurfaceParameterSetParameterStructure
GridMaximalParameterSetParameterStructure
GridSpacetimeVariableSetParameterStructure
GridSurfaceVariableSetParameterStructure
GridMaximal VariableSetParameterStructure
GridAxisDescriptionParameterStructure
GridAxisContributionParameterStructure
GridMethodParameterStructure
GridSetMethodParameterStructure

GridSpaceParameterSetParameterStructure

BooleanSpaceParameterSetParameterList
IndexSpaceParameterSetParameterList
IntegerSpaceParameterSetParameterList
RealSpaceParameterSetParameterList
CharacterSpaceParameterSetParameterList

7 -~

, GridAppendixStructure
[BOOLEAN][SPACEPARAMETERSET][0]

GridSpatial FormAppendix
GridFunctionalDataAppendix
GridFunctionalMethod Appendix

stencil I
refinement factor —F—=
axis loci
axis set
staggering
selection
—= [
\
density
//
/] energy
121 4| 4

Figure 6.50: Structure of stratum data

218

type, since the array of appendix pointers includes some combinations that are not types; for
example, the VoidList type combination is not a valid data type.” Aside from a very small
number of additional data fields — for example, a structure of level data also has pointers
to the immediately coarser and immediately finer structures of level data — a structure
of stratum data when first allocated consists only of these two sets of pointers, which are
initially null. Additional memory consumption is driven entirely by demand.

While the hierarchical slot arrangement of a data type is quite simple, the structural
properties of an appendix are far more complex. This complexity arises because of the
desire to minimize the amount of memory consumed by the data structure. Thus, just as a
list of pointers to data items is allocated on demand, each appendix structure is allocated
on demand, in essentially the same manner.

The appendix structure is itself merely a collection of pointers, specifically to the various
categories of attributes that the various data types require. For example, each appendix

contains pointers to structures that contain the attributes that describe

e the computational shapes of structured types;

e the computational shapes of spatial types;

e the time information attached to a relative time level list;

"There are a total of 164 valid data types: thirteen element types for each of the nine structured parameter
types, four element types for AxisDescriptions, one element type for AxisContributions, five element
types for each of the six spatial parameter types, and six element types for each of the two method parameter
types. In contrast, there are 266 combinations of element type and parameter type.

219

the temporal information of spatiotemporal types;

e functional data references;

functional method references;

e method value indices.

Encapsulating these pointers within a single structure incurs very little cost — a few unused
pointers for each data type — while ensuring that operations on the appendix structure are
appropriate for all data types.

This same strategy applies equally well at the bottom level of the appendix structure.
For example, the structure that contains the computational shape attributes for spatial types
has slots for the stencil, thickness, refinement factor, axis loci, and so on, yet only Surface
sets require a thickness attribute. Thus, just as with each category of attributes, space for
each individual attribute is allocated only if required by the data type to which the appendix
belongs.

Each individual attribute is represented by a list, with one entry for each data item of
the associated type. Some lists, such as for functional method attributes, contain references
— that is, pointers to other data items. Other lists, such as for the staggering, contain scalar
attribute values; in the case of the staggering, the attribute is a list of staggering values.
Finally, some lists, such as for the axis loci, contain a small structure for each data item.

Creating a structure of stratum data, then, is a straightforward process. First, the base

structure itself is allocated, and all its constituent pointers are set to null. Second, for each

220

data type, the appropriate appendix framework is allocated if there are data items of that
type, and its values are initialized to null values. Finally, for each data type, the appropriate

data item framework is allocated, and all its data item pointers are set to null.

6.3.6 Data Item Macros

Many implementations of Berger’s AMR strategy, including HAMR, rely on elaborate chains
of pointers to obtain data from a variety of sources. For example, Haupt [Hau95] reports

constructs such as

grid%gfcn(ESTRE) %tlev(l)%data

while Bryan [Bry96¢] employs such chains as

Temp->GridHierarchyEntry->ParentGrid->GridData->AreSubgridsStatic()

HAMR would have this problem as well; in fact, it would have a much more severe form of
the problem, since it has much more elaborate data structure definitions. A typical HAMR

pointer chain looks like:

grid->grid_data->level_data->hierarchy_data->
hierarchy_data_parameter_structure.
hierarchy_data_single_parameter_structure.
Hierarchy_IntegerStencil_Single[0]

To avoid this problem, HAMR provides a filter that extracts data members from a C

struct or union definition and converts them into macros. The filter acts as a very simplified

221

type definition parser, examining the definition and determining which identifiers are data
types and which are members. From these members, macros can be constructed whose
names are the concatenation of the encapsulating data structure type and the member name.
For example, a member of a level structure called finer_level would have as its macro

definition:

#define Level_finer_level(level) ((level)->finer_level)

The filter parses not only the data structure definition, but also any #include directives
in the file. For each #include directive that refers to a type definition file — that is, an
include of a file whose name is of the form filename_typedef.h — the resulting file of

macro definitions will also include the associated file of macro definitions; for example,

#include <griddata_typedef.h>

in the file containing the data structure definition is converted to

#include <griddata_macro.h>

in the resulting file containing the macros. In addition, on discovering such an #include
directive, the filter parses the associated macro file, and creates new macros that associate
the data structure members associated by the macros in the included file to the data structure
in the top level file. Thus, for example, if the included macro file contains a definition for

LevelData_Level_Real_List(leveldata), then a definition

222

#define Level_Level_Real_List(1) \
LevelData_Level_Real_List(Level_level_data(l))

will be placed in the macro file that the filter is currently producing. In fact, since the filter
applies this approach to all data structure definitions, the filter produces a set of macros
that ultimately associates the highest level data structures with structure members on the

lowest level data structures; for example,

#define Grid_Fixed_Real_Single(g) \
GridData_Fixed_Real_Single(Grid_grid_data(g))

In this example, the macro associates the grid structure to a real scalar encapsulated by the
structure of fixed data, because the expansion of the top level macro is itself a macro, whose

expansion is a macro, and so on.

In addition, the declaration parser provides another level of macros on top of the macros
provided by the filter. These macros associate the name of a data item with the appropriate
data structure member, by combining the data structure member macro with the appropriate
index into the data structure member, which is of course a list of pointers to data items of the
appropriate stratiform type. The set of macros for each scope includes all broader scopes, and
therefore the application programmer is not only provided with a clean, intuitive interface to
the data, but is also relieved of the burden of being constantly aware of the specific, detailed,
hierarchical arrangement of data structures that constitute the overall HAMR data structure

system.

223

6.3.7 Predefined Data Items

One of the primary advantages of this generalized approach to data management is that it
allows general purpose data items to be declared, stored and managed in precisely the same
manner as application-specific data items. For example, every grid has associated with it an
IndexRegion called locus_in_domain, which indicates the diagonally opposite endpoints of
the computational subdomain that the grid subtends. This region is declared as a data item
encapsulated by the grid, and the data management system treats it in the same manner as
any other data item.

To take full advantage of this capability, HAMR includes a set of predefined modules
that describe the standard data items and methods that are available for all applications.
These modules include the standard data items that all data structures require, as well as
the standard AMR algorithms, and a number of methods that are likely to prove useful to
application developers.

Standard data items enscapsulated in the structure of hierarchy data are declared in a

generic module called Hierarchy data. These data items include:

flags indicating which axes have periodic exterior interfaces;

flags indicating which exterior interfaces are reflecting;

o the number of cells along each axis at the coarsest resolution;

e the maximal active stencil;

224

e the maximum depth allowed;

e a queue of regions indicating the arrangement of root level grids.

The module also includes methods that initialize these various data items.
Standard data items enscapsulated in the structure of level data are declared in a generic

module called Level data. These data items include:

the depth of the level;

the refinement factor with respect to the immediately coarser level;

o the number of cells along each axis of the domain at the level’s resolution;

o the buffer region;

the refinement period;

a queue of regions that are to be selected;

a queue of regions that are not to be selected.

The module also includes methods that initialize these various data items.

The queues of regions to be selected or not selected are a useful addition to HAMR, be-
cause they provide the ability to use static grids, or to declare certain regions as permanently
refined. In fact, the use of these queues is slightly more subtle: their values are regions not of
computational space but of computational spacetime. Thus, for example, a particular region

can be highly refined for a period of time, then less refined afterwards, or vice versa.

225

Standard data items enscapsulated in the structure of grid data are declared in a generic
module called Grid data. These data items include the locus of the subgrid in the com-
putational domain, and the various lists of relationships between the grid and other grids,
including the relationships between its interior and its parents, between its boundary and the
parents of its boundary, between its boundary and its siblings, between it and its children,

and the set of regions of its boundary that are on the exterior of the computational domain.

An important point about these relationships is that they are static with respect to the
lifetime of the grid, except for the relationships to children. The reason the relationships are
static is that the arrangement of grids at a particular level is fixed at regridding, and does
not change until the next regridding — at which time, the grids in question are discarded,
because they are replaced by new grids, which cover the region that the phenomenon of
interest has moved into. Thus, while a parent, over the course of its lifetime, will have many
different sets of children, a child over its lifetime will have exactly one set of parents. As a
result, interactions between levels can be expressed more cleanly, and with more confidence
in the immutability of the relationships, if they are expressed as an interaction between a
grid and its parents, rather than between a grid and its children. (In some cases the latter
is unavoidable, but to the extent that it can be avoided, it should be.)

Various mesh types have data items that are specifically associated with them. For
example, isotropic meshes require a coarsest cell size stored on the hierarchy, and a local cell
size stored on the level; in contrast, rectilinear meshes require the positions of the nodes and

cell centers at the root level resolution, as well as the sizes of the cells, which are stored on

226

the hierarchy, and analogous information at the local resolution stored on each level.
Just as standard data items are declared, so too are the standard AMR algorithms. These
include most of the algorithms described in Section 6.4. Typically, the modules for these

algorithms look like:

Integrator standard integrator().

However, a few of them declare data items as well. For example, the standard refiner declares
a field of overall selection flags on each grid, onto which are mapped the selection flags from
each variable, which are application specific data items. Thus, for example, the clustering
algorithm needs to know nothing about the application variables — such as density, energy

and velocity — because their selection flags are subsumed by the overall selection field.

6.3.8 Summary

While the HAMR data management system is based on the theoretical underpinnings laid
out in Chapter 5, its capabilities extend beyond those precepts to provide tremendous power
and flexibility, which are available with minimal effort on the part of the application sci-
entist. This aspect of HAMR makes it a natural way to express and perform complex,
sophisticated simulations, even if they do not require adaptive techniques, or even if the
adaptive techniques they require do not match Berger’s strategy. More importantly, how-
ever, they provide an ideal bridge between an application scientist and the AMR algorithms

necessary for utilizing Berger’s strategy.

227

6.4 Algorithms for Berger’s AMR in HAMR

HAMR implements the standard algorithms that perform the operations required by Berger’s

AMR strategy. These algorithms include:
e control;
e integration;
e boundary collection;
e extrapolation;
e refinement;
o regridding;
e Richardson truncation error estimation;
e selection;
o clustering;
e correction;
e projection.

However, HAMR does not merely copy the existing AMR algorithms. Instead, it imple-

ments versions of them which take full advantage of the expressive power of the HAMR data

228

Void Hierarchy_standard_controller (Hierarchy hier)

{
if (Hierarchy_root_timesteps(hier) < 1) return;
for (ts = 0; ts < Hierarchy_root_timesteps(hier); ts++) {
Level_integrator_method_execute(Hierarchy_level(hier) [0]);
Hierarchy_outputter_method_execute(hier);
}
}

Figure 6.51: Standard controller

structure and data management infrastructure. Thus, despite the fact that HAMR is based
on the work of Berger and collaborators, these algorithms themselves constitute a significant

contribution to the AMR canon.

6.4.1 Control Algorithm

The control algorithm provided for HAMR loops over the chosen number of root level inte-

grations, performing two operations for each: the integration itself, and an output operation

(Figure 6.51).

6.4.2 Integration

HAMR’s standard integration algorithm (Figure 6.52) implements the recursive algorithm
described in Section 4.4. The halting condition for the algorithm is that it has reached an
empty level, at which point it returns without computing. Otherwise, the algorithm refines

if appropriate. Then, it collects boundary values. Next, it determines the timestep interval,

229

Void Level_standard_integrator (Level lev) {
if (Level_grids(lev) < 1) return;
if (Level_old_timestep(lev) % Level_refinement_period(lev)) == 0)
Level_refiner_method_execute(lev);
Level_standard_boundary_collector(lev); Level_timer_method_execute(lev);
Level_solver_method_execute(lev);
if (Level_not_finest_existing(lev) &&
(Level_grids(Level_finer_level(lev)) > 0))
for (r = 0; r < Level_refinement_factor_from_finer(lev) [TIME]; r++)
Level_standard_integrator(Level_finer_level(lev));
Level_incrementer_method_execute(lev);
if (Level_not_finest_existing(lev) &&
(Level_grids(Level_finer_level(lev)) > 0)) {
Level_corrector_method_execute(lev);
Level_projector_method_execute(Level_finer_level(lev));

+
+

Figure 6.52: Standard integration

an operation that for many applications is empty; however, some applications constrain the
time interval not to overtake the minimum sound speed on the grid, so this operation can
be an application-specific constraint enforcement. Afterwards, the solver is called for all
grids at the current level. Then, the integrator performs the r recursive calls to itself on the
immediately finer level, followed by incrementing the time information. Finally, if the level

is not the finest, then correction and projection are performed.

6.4.3 Refinement

HAMR’s standard refinement algorithm (Figure 6.53) implements the recursive refinement

algorithm described in Section 4.4. First, if the level is the deepest permitted, then no re-

230

Void Level_standard_refiner (Level lev) {
if (Level_depth(lev) == Level_maximum_depth_allowed(lev))
return;
Level_standard_boundary_collector(lev);
Level_overall_selected_create(lev);
if (Level_grids(Level_finer_level(lev)) > 0)
Level_standard_refiner(Level_finer_level(lev));
Level_selected_sets_create(lev);
Level_selector_method_execute(lev);
Level_merge_selected_sets_into_overall_selected(lev);
Level_select_domain_exterior(lev);
Level_merge_permanently_selected_into_overall_selected(lev);
Level_selected_sets_delete(lev);
Level_expand_overall_selected(lev);
if (Level_not_root(lev))
Level_merge_overall_selected_into_coarser(lev);
Level_clusterer_method_execute(lev);
Level_overall_selected_delete(lev);
Level_standard_regridder(Level_finer_level(lev));
Level_clusters_delete(lev);
if ((Level_grids(Level_finer_level(lev)) > 0) &&
Level_is_at_initial_timestep(lev))
Level_standard_refiner(lev);
if (Level_not_finest_allowed(lev))
Level_get_children(lev);

Figure 6.53: Standard refiner

231

finement is possible, so the operation terminates. Otherwise, boundary values are collected,
in case the selection criterion requires them. Next, the flag fields that indicate the selected
cells are allocated, in order to allow finer levels to map their flags into them, to ensure cover-
age. Then, if finer levels have grids, the refinement operation is called recursively. After the
recursion terminates, the selection algorithm is applied, and the results are merged together
to provide the aggregate selection on each grid, including the expansion to cover buffers
and boundary regions. These expanded selection flags are merged with the selection flags
at the immediately coarser level, to ensure that these grids are fully covered, and then the
clustering algorithm is applied. The selection flag fields are deallocated, and then the regrid-
ding algorithm is applied. Next, if the refinement is occurring during initialization, then the
refinement algorithm is applied recursively. Finally, the grids determine their relationships

with their children.

6.4.4 Regridding

HAMR’s standard regridding algorithm (Figure 6.54) replaces a set of grids with a new set
that more properly covers the phenomena of interest. The algorithm begins by ensuring
that the level is not the coarsest level, since the grids at the coarsest level are never altered,
since they delimit the computational domain. Next, it deletes all enduring data items on the
grids, since they will not be needed for regridding. If there are new grids to replace the old
grids, then they are created, and their sibling and parent relationships are determined. The

values on the new grids are injected from their parents, and then more accurate values are

232

Void Level_standard_regridder (Level lev) {
if (Level_is_coarsest_existing(lev))
return;
old_grids = Level_grids(lev);
old_grid = Level_grid(lev);
for (g = old_grids - 1; g >= 0; g—-)
Grid_parameter_all_enduring_delete(Level_grid(lev)[g]l);
if (clusters == 0)
{ Level_grids(lev) = 0; Level_grid(lev) = NULL; }
else {
Level_grids(lev) = clusters;
Level_grid(lev) = GridList_framework_allocate(Level_grids(lev));
for (g = 0; g < new_grids; g++)
Level_grid(lev) [g] = Grid_create(lev, g, cluster([gl);
Level_get_siblings(lev);
Level_get_parents(lev);
if (Level_not_finest_existing(lev))
Level_get_parents(Level_finer_level(lev));
for (g = 0; g < new_grids; g++)
Grid_inject_interior_from_coarser(Level_grid(lev) [g]);
if (old_grids > 0)
Level_copy_from_overlaps(lev, old_grid, old_grids);
}
if (old_grids > 0) {
for (g = old_grids - 1; g >= 0; g--)
Grid_delete(old_grid[gl);
old_grid = GridList_framework_free(old_grid, old_grids);
}
Level_get_exterior_regions(lev);
for (g = 0; g < new_grids; g++)
Grid_parameter_all_enduring_create(Level_grid(lev)[g]l);

Figure 6.54: Standard regridder

233

Void Grid_standard_boundary_collector (Grid grid) {
if (Grid_not_at_coarsest_level(grid))
Grid_standard_parent_boundary_collect(grid);
Grid_standard_sibling_boundary_collect(grid) ;
Grid_standard_boundary_reflect(grid);
Grid_extrapolator_method_execute(grid);

+

Figure 6.55: Standard collector

Void Grid_standard_parent_boundary_collect (Grid grid) {
for (i = 0; i < items; i++)
for (par = 0; par < Grid_parents(grid); par++)
for (member = 0; member < members; member++)
Grid_inject_method_execute(
grid, Grid_parent(grid) [par], REAL, SPACETIMEVARIABLESET, p,
Grid_parent_in_boundary(grid) [par] [MINIMUM]),
Grid_parent_in_boundary(grid) [par] [MAXIMUM]),
Grid_boundary_in_parent(grid) [par] [MINIMUM]),
Grid_boundary_in_parent (grid) [par] [MAXIMUM])) ;

Figure 6.56: Collection from parents

copied from any of the old grids that overlap the new grids. The old grids are then deleted,
the exterior region information is obtained for them, and then the enduring data items are

created.

6.4.5 Boundary Collection

HAMR’s collection algorithm (Figure 6.55) obtains the ghost boundary values for a grid.

Boundary values are collected from parents (Figure 6.56), siblings (Figure 6.57), from the

234

Void Grid_standard_sibling_boundary_collect (Grid grid) {
for (i = 0; i < items; i++)
for (sib = 0; sib < Grid_siblings(grid); sib++)
for (member = 0; member < members; member++)
RealField_offset_copy(
Grid_Grid_Real_SpacetimeVariableSet(grid)
[i] [mb] [0old_time_levell],
Grid_Grid_Real_SpacetimeVariableSet(sibgrid)
[i] [mb] [0old_time_levell],
axis_set, staggering, sib_staggering, axis_loci, sib_axis_loci,
sibling_boundary_size,
Grid_sibling_in_boundary(grid) [MINIMUM],
Grid_boundary_in_sibling(grid) [MINIMUM],
dimension) ;

Figure 6.57: Collection from siblings

grid itself, and from the exterior, in that order. In this way, the most accurate value replaces
less accurate values: the values injected from the coarser level are replaced by values copied
from elsewhere on the local level, and values on the exterior of the problem domain are

extrapolated.

The importance of this approach can be seen in Figure 6.58, which depicts the boundary
collection for the protostellar jet example shown in Figure 2.13. Because the jet inflow is on
an otherwise reflected boundary, the reflection must occur before the extrapolation, which
in this case sets the jet inflow values on a small subset of the cells on the reflected exterior
boundary. If the order were different, the jet inflow values would be replaced by reflecting

the cells abutting the jet.

Reflecting and periodic boundaries are special cases that are addressed in a manner very

235

3|1 4| 5] 6 . collect 314|567 33| 4] 5] 6|7
2| 3| 4|5 from 2| 3] 4|56 2|2 3|4|5]6
""" parents 777
- 1| 2] 3| 4 : : 12| 3] 4]|5: c1 | 1] 23] 4|5
eees and ... e
0| 1] 2] 3 . siblings o 1] 2| 3|4 wrefleect_ 0| 0| 1| 23] 4:
o] 1] o2 lof 1] 2] 3 -t o| 1] 2|3
2 -1 0] 1 2 -1l o] 1] 2 20210 1] 2
3 -2|-1]0 B2 -1]o]1 30 -3]-2]|-1]0]|1
4| -3 -2 -1 4| -3|-2]-1]o0 4] -4]-3|-2]|-1]|0

negate
velocity
exterior —4 4 5 6 7 8 —4 4 5 6 7 8
—3 3 4 5 6 7 —3 3 4 5 6 7
—2 2 3 4 5 6 —2 2 3 4 5 6
—1 1 2 3 4 5 —1 1 2 3 4 5
. t/ 15 0 1 2 3 4 mﬂow 0 0 1 2 3 4
e T 15 -1 0 1 2 3 1 -1 0 1 2 3
2 -2 -1 0 1 2 2 20 -1 0 1 2
3 -3 -2 -1 0 1 3 -3 -2 -1 0 1
4 4| -3 -2 -1 0 4 41 -3]-2]-1 0
5 54 -3 -2 -1 5:.-5.-4.-3: -2 -1

Figure 6.58: Boundary collection order

236

different from other boundaries, and very different from one another. Periodic boundaries
are implemented not with special code, but by translating the domain when determining
sibling relationships (Figure 6.59). Thus, obtaining periodic boundary values requires no
additional instrumentation in the sibling boundary collection algorithms, and minimal ad-
ditional instrumentation in the algorithm that determines sibling relationships, since the
translation requires nothing more than making extra copies of the input list of grid regions

and adding a constant to them.

Reflecting boundaries, on the other hand, require an entire additional algorithm. For
each grid, the algorithm determines whether any of its boundaries reflect — based on a set
of flags encapsulated on the hierarchy, and the position of the grid within the overall domain
— and if so, it copies their outermost interior values into the exterior boundary region, using

a stride of -1 along the reflecting axis.

Some physical quantities, such as velocities, negate their values on reflection. Since the
boundary reflection algorithm is not in a position to know whether a particular variable has
this property, the negation can be implemented as the extrapolator for the variable; that is,
each variable that requires negation can have as its extrapolate attribute a function that
negates it if the exterior region is along the appropriate axis. (For example, the & component
of velocity should only be negated along a reflecting boundary that is perpendicular to the
z-axis.) If additional instrumentation is required, for example in the case of the small jet
inflow within a reflecting boundary, then the call to the negation algorithm can be bundled

with the inflow routine.

237

Figure 6.59: Periodic boundaries implemented as translated siblings

238

Void Level_standard_time_incrementer (Level lev) {
for (i = 0; i < real_list_items; i++)
if (Level_is_time(lev, REAL, LIST, 1)) {

Level_new_time_level(lev,REAL,LIST)[i] =
(Level_new_time_level(lev,REAL,LIST) [i] + 1) %
Level_elements_scalar(lev,REAL,LIST,i);

Level_old_time_level(lev,REAL,LIST)[i] =
(Level_old_time_level(lev,REAL,LIST) [i] + 1) %
Level_elements_scalar(lev,REAL,LIST,i);

Level_absolute_level_timestep(lev,REAL,LIST) [i] [new_time_level] =
Level_absolute_level_timestep(lev,REAL,LIST)[i] [old_time_level] + 1;

Level_time_interval_from_previous(lev,REAL,LIST) [i] [new_time_level] =
Level _root_time_interval(lev) /
Level_axis_aggregate_refinement_factor_from_root(lev,TIME);

Level_absolute_time(lev,REAL,LIST) [i] [new_time_level] =
Level_absolute_time(lev,REAL,LIST) [i][old_time_level] +
Level_time_interval_from_previous(lev,REAL,LIST) [i] [new_time_levell];

}
Level_old_time_match(lev);
}

Figure 6.60: Standard incrementer

6.4.6 Incrementing Time Information

HAMR’s standard incrementing algorithm (Figure 6.60) updates the time information for
a level after an integration has been completed. For each Reallist that represents time
information, the algorithm increments the old and new time level indices modulo the number
of time levels, increments the timestep number, sets the time interval to the root time interval
divided by the aggregate time refinement factor, and adds the time interval to the old
physical time to obtain the new physical time. When all such updates have been made, the

incrementer copies the level’s physical time values to all finer levels, to eliminate accumulated

239

roundoff error. This last operation is safe, because the incrementer is called after a set of
finer integrations has occurred, at which point the physical time on the finer level has caught
up to the physical time on the coarser level, except for roundoff.

Because the incrementer is applied immediately following the completion of the finer
iterations, all operations on the grid occur on the old time level, not on the new time level.
The only exception is injecting a value from a parent; in this case, the injection is interpolated

between the old and new time levels.

6.4.7 Richardson Truncation Error Estimation

Richardson truncation error estimation (described in Section 4.4.6), while both intuitive
and mathematically simple, is perhaps the most difficult algorithm to generalize for an
arbitrary solver. Indeed, many implementations of Berger’s AMR strategy either implement
only a simplified version of the algorithm, or require considerable reinstrumentation of the
solver. One AMR formulation, for example, required that the solver accept a stride, which
would be one in the case of genuine evolution or two in the case of half resolution error
estimation calculations. Choptiuk, on the other hand, constantly maintains a half-resolution
shadow hierarchy, computing every alternate timestep on it, which results in a half resolution
approximation of the error estimation, and which constrains the refinement factor to powers
of two.

The aspect of the error estimation algorithm that is the source of all the difficulty is, in

fact, the half resolution Qay(u) calculation. While in principle this calculation is straightfor-

240

Q(u, 2dx, 2dt) left

0 2 y 6 8 10

1 1 1 1 l &

|-e —@® —@® —@® —@® o |
A A A A

1 10
V v v V v

| 1 1 1 1

| o o o o |
1 3 5 7 9

Q(u, 2dx, 2dt) right
Figure 6.61: Half resolution grids for Richardson truncation error

ward — the solver calculates based on every other value, rather than each value — in practice
it 1s difficult to achieve, because in a generalized AMR system the solver is not, and should
not be, in a position to know whether the calculation is full resolution or half resolution, or
whether the calculation is genuine or for error estimation. Thus, in order for the truncation
error algorithm to be fully generalized, the Qg;(u) calculation must be performed on a grid
that is in every way identical to the standard grid, except that it has half the resolution. Or
rather, it must be performed on 27 such grids, whose values are drawn starting from either

the first or second value along each axis of the original grid (as shown in Figure 6.61).

Still, constructing the half resolution grids should not be overly burdensome. But in

addition to this requirement, the collection of half resolution grids, taken in aggregate, also

241

require twice as many ghost boundary values as the full resolution grid (as shown in Figure
4.21). These boundary values are drawn not only from parents but from siblings and the
exterior as well. It is this requirement that has kept many researchers from implementing

generalized error estimators.

The solution that HAMR implements involves constructing a dummy grid that is identi-
cal to the original grid in all but two respects. First, every spatial data item on the dummy
grid has a double-width ghost boundary; that is, all stencils are doubled. Second, the orig-
inal grid’s boundary relationship information is discarded, and its boundary relationships
are recalculated, thereby providing the necessary information for drawing the appropriate
double-width set of boundary values, using the existing boundary collection algorithm —
whatever that may be. In this manner, proper boundary information is obtained not only
from the parents, but also from siblings and exterior regions — including, conceivably, par-
ents, siblings and exterior regions that the original grid does not require (Figure 6.62). After
the boundary values have been collected, the expanded grid’s non-permanent data items can
be deallocated, because the expanded grid will be used only as a source of values for the half

resolution grids on which Qap(u) is calculated.

In fact, creating the half resolution grids is now trivial. Each of the 2¢ half resolution
grids is operated on in turn: it is created; its values are copied directly from the expanded
grid, starting in the boundary region at either the first or the second locus along each axis
and using a stride of 2, thereby automatically obtaining the appropriate boundary values;

the solver is applied to it, just as if it were a standard grid, but using a time interval twice

242

Original sibling

Original parents

Expanded siblings

Expanded exterior

Expanded parents

Figure 6.62: Expanded dummy grid boundaries

243

the length of the original time interval; the values on the interior of its “new” field are copied
into the interior of the “new” field of the original grid, again starting at either the first or
the second locus along each axis and using a stride of 2; finally, it is deleted. In this manner,

all of the half resolution grids are solved, but at no time does more than one such grid exist.

When all of the half resolution grids have been solved and discarded, the expanded grid
can be discarded as well, since its purpose is merely to provide values for the half resolution
grids. Thus, during the process of computing the half resolution solution, the extra storage
required is only the expanded grid — or slightly less, since some of its data items can be
deleted — plus a single grid whose size is 1/2¢ of the original grid, and two copies of the grid
data structure. The value of Qa;(u) for all interior loci is stored in the “new” field of the
original grid, a field that is otherwise unused, because refinement on a level can occur only

after the most recent timestep has been completed, and that timestep’s solution is stored in

the “old” field.

Once the half resolution solution has been obtained, the next step is to obtain the full
resolution solution over two timesteps. This operation is considerably simpler, because it can
be performed on a single grid that is identical to the original. So, a copy of the original grid
is created; its boundary values are collected; it is evolved the first time; its time information
is incremented; its boundary values are collected again; it is evolved the second time; the
values on its “new” field — Qn(Qp(u)) — are subtracted from the values on the original
grid’s “new” field, with the result remaining in the original grid’s “new” field; finally, it is

deleted. Thus, during the operation, the total amount of additional memory consumed is the

244

amount consumed by the original grid, and when the full resolution timesteps are finished,
the values on the interior of the original grid’s “new” field are Qax(u) — Qn(Qp(u)), which

is, in fact, the Richardson truncation error estimate times a constant.

Superficially, this approach to computing truncation error appears extraordinarily waste-
ful of memory: after all, an additional 2942 grids are required to obtain the result. On closer
examination, however, it becomes clear that the algorithm is insignificantly more wasteful
than an approach whose memory consumption is fully optimal, even one which achieves
optimal consumption by reinstrumentation of the solver. The reason this is so is that, no
matter how one approaches computing the half resolution timestep, the two full resolution
timesteps absolutely require a complete copy of the original grid. This requirement arises
because these timesteps, if performed on the original grid itself, would overwrite the values
of the old time level(s), so the old values must be stored separately from the full resolution
grid, and because of the need to store the half resolution result before computing its two full
resolution counterparts. In other words, the “new” field is needed for storing the interme-
diate half resolution result, and the “old” field(s) are needed for retaining the “old” results,
which will be required either to compute the next genuine timestep at the level that is being
refined, if the grid is on the coarsest level being refined at the moment, or to be copied onto

the overlapping replacement grids, if it is on a finer level.

Thus, since an entire additional grid is required for computing the full resolution result,
the waste associated with this approach is the difference between the size of the original grid

and the sum of the expanded grid and one of the half resolution grids. Careful examination

245

reveals that the relative waste is large only in the case of very small grids, but that in such
cases the absolute waste is quite small (aside from the fixed size of the additional grid data
structure). For example, an 8 x 8 x 8 grid with a seven point stencil will have a 14 x 14 x 14
bounded field comprising 2744 loci, while its expanded counterpart with a thirteen point
stencil will have a 20 x 20 x 20 bounded field comprising 8000 loci, as well as a 4 x 4 x 4
half resolution grid with a seven point stencil, which will have a 10 x 10 x 10 bounded field
comprising 1000 loci; thus, the total waste will be 8000 4+ 1000 — 2744 = 6256 loci, or about
2.28 times the original bounded field — which is a high relative waste but a very low absolute
waste. On the other hand, a 64 x 64 x 64 grid with a seven point stencil will have a 70 x 70 x 70
bounded field comprising 343000 loci, while its expanded counterpart with a thirteen point
stencil will have a 76 x 76 x 76 bounded field comprising 438976 loci, as well as a 32 x 32 x 32
half resolution grid with a seven point stencil, which will have a 38 x 38 x 38 bounded field
comprising 54872 loci; thus, the total waste will be 438976 + 54872 — 343000 = 150848 loci,
or about 0.44 times the original bounded field — which is a high absolute waste but a low

relative waste.

Thus, this approach provides a fully generalized truncation error estimation algorithm,
which will function perfectly well regardless of the details of the boundary value collector,
the solver, the time incrementer and other such AMR modules, yet it requires very little
memory beyond the absolutely optimal memory consumption achievable with radical re-
instrumentation of the application algorithms. This approach’s generality is achieved not

only without reinstrumentation of application routines, but also without declaring a single

246

additional data item.

6.4.8 Flux Correction

Although HAMR’s flux correction algorithm (Figure 6.63) is algorithmically simple, it in-
volves a variety of operations, and demonstrates the importance of functional data attributes.
The algorithm begins by setting the grid’s boundaries to zero, for reasons that will be ex-
plained presently. Next, the correction values on all of the child grids are calculated, de-
scribed below. A query to the specification produces the correction data attribute, from
which the proper surfaces of the children are obtained. Then, for each minimum (left) sur-
face of each child, the correction values are subtracted from the coarse cells immediately
before the surface, and for each maximum (right) surface, the correction values are added to

the coarse cells immediately after the surface.

Interface correction (Figures 6.64 and 6.65) begins with a query to the specification
that obtains the precorrection and postcorrection attributes, from which pointers to the
correction surfaces are obtained. Then, for each interface, the precorrection surface values
are divided by the product of the refinement factors not along that surface — for example,
an z-face is divided by r, - r,. Next, the postcorrection surface values are subtracted from
the precorrection surface values, with the result placed in the postcorrection surface. Then,
the finer postcorrection surface values are summed and placed into the associated coarser

precorrection surface loci. Finally, the results are divided by the sizes of the coarse cell faces.

247

Void Grid_standard_correct (Grid grid, Index i) {
Grid_old_boundary_set_to_constant(grid, (Real)0);
for (c = 0; ¢ < Grid_interior_children(grid); c++)
Grid_standard_correct_interfaces(Grid_interior_child(grid) [c], 1);
prest = Specification_precorrection_data_archetype_component_query(
Grid_specification(grid),
GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_SYSTEM_LEVEL);
prep = Specification_precorrection_data_archetype_component_query(
Grid_specification(grid),
GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_PARAMETER);
for (c = 0; ¢ < Grid_interior_children(grid); c++) {
precorrection_data =
*Grid_parameter_address(child_grid,
prest, REAL, SURFACEPARAMETERSET, prep);
for (interface_axis = 0; interface_axis < dimension; interface_axis++) {
IndeXPoint_copy(interface_start,
Grid_child_interior_in_interior(grid) [MINIMUM], dimension);
interface_start[interface_axis] -= 1;
for (member = 0; member < members; member++)
RealField_offset_add(
grid_data[mb] [old_time_levell], grid_datal[mb] [old_time_levell],
precorrection_datalinterface_axis] [MINIMUM] [mb],
axis_set, staggering, staggering, interface_staggering,
axis_loci, axis_loci, precorrection_axis_loci,
precorrection_axis_loci,

interface_start, interface_start, index_zero, dimension);
interface_start[interface_axis] =
Grid_child_interior_in_interior(grid) [MAXIMUM] [interface_axis] + 1;
for (member = 0; member < members; member++)
RealField_offset_subtract(
grid_data[mb] [old_time_levell], grid_datal[mb] [old_time_levell],
precorrection_datalinterface_axis] [MAXIMUM] [mb],
axis_set, staggering, staggering, interface_staggering,
axis_loci, axis_loci, precorrection_axis_loci,
precorrection_axis_loci,
interface_start, interface_start, index_zero, dimension);

Pl

Figure 6.63: Standard corrector

248

Void Grid_standard_correct_interfaces (Grid child_grid, Index i)
{
prest =
Specification_precorrection_data_archetype_component_query(
Grid_specification(child_grid),
GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_SYSTEM_LEVEL);
prep =
Specification_precorrection_data_archetype_component_query(
Grid_specification(child_grid),
GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_PARAMETER);
precorrection_data =
*Grid_parameter_address(child_grid,
prest, REAL, SURFACEPARAMETERSET, prep);
postst =
Specification_postcorrection_data_archetype_component_query(
Grid_specification(child_grid),
GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_SYSTEM_LEVEL);
postp =
Specification_postcorrection_data_archetype_component_query(
Grid_specification(child_grid),
GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_PARAMETER);
postcorrection_data =
*Grid_parameter_address(child_grid,
postst, REAL, SURFACEPARAMETERSET, postp);

Figure 6.64: Interface correction (part 1)

249

for (interface_axis = 0; interface_axis < dimension; interface_axis++) {
for (axis = AXIS1; axis <= maxaxis; axis++) if (axis != interface_axis) {
interface_refinement_factor *=
Grid_refinement_factor_from_coarser(grid) [axis];
interface_size *= Grid_isotropic_cell_size(child_grid) [axis]; }
for (interface_ext = MINIMUM; interface_ext <= MAXIMUM; interface_ext++)
for (member = 0; member < members; member++) {
RealField_contiguous_divide_by_constant(
precorrection_data[member] [interface_axis] [interface_ext],
precorrection_data[member] [interface_axis] [interface_ext],
axis_set, staggering, precorrection_axis_loci, dimension,
(Real)interface_refinement_factor);
RealField_refinement_from_first_subtract(
postcorrection_data[member] [interface_axis] [interface_ext],
precorrection_data[member] [interface_axis] [interface_ext],
postcorrection_data[member] [interface_axis] [interface_ext],
axis_set, staggering, staggering, staggering,
postcorrection_axis_loci,
precorrection_axis_loci, postcorrection_axis_loci,
postcorrection_axis_loci,
index_zero, index_zero, index_zero,
Grid_refinement_factor_from_coarser(child_grid), dimension);
RealField_projection_sum(
precorrection_data[member] [interface_axis] [interface_ext],
postcorrection_data[member] [interface_axis] [interface_ext],
axis_set, staggering with_interface_axis_offset_from_center,
precorrection_axis_loci,
postcorrection_axis_loci, precorrection_axis_loci,
index_zero, index_zero, index_zero, index_zero,
Grid_refinement_factor_from_coarser(child_grid), dimension);
RealField_contiguous_divide_by_constant(
precorrection_data[member] [interface_axis] [interface_ext],
precorrection_data[member] [interface_axis] [interface_ext],
axis_set, staggering, precorrection_axis_loci, dimension,
(Real)interface_size);

Pl

Figure 6.65: Interface correction (part 2)

250

More formally, on a z-face, for example,

_ pre
prezmin - F
_ Tt post
post, = YL, f
prezmin = Frre
prezmin = rely - rzly
. A Tt post
post, =~ <« pre, —post, =~ = oty it f
Tz Ty — Tz Ty Fpre Tt post
pre. . < Zi:l Zj:l pOSthin = Zi:l Zj:l (T’ﬂ’y - Zi:l f)
— pre __ T Ty Tt post
= F Zi:l Zj:l Zizl f
Tz Ty Tt st
re — Pres vin — FPre — Zl‘:l Z]=1 Zi:l fre
p Zmin Az-Ay - Az-Ay

Thus, the proper correction is obtained from the fluxes, without requiring any extra storage
for intermediate results and at the cost of a single additional division by a constant.

When a fine grid abuts the interface of its coarser parent (Figure 6.66), the correction
values along that interface are added to the ghost boundary of the parent, which as noted
above has been set to zero. Then, after all of the grids have been corrected, the grid
boundaries are added to the sibling interiors that overlap them, in much the same manner
as sibling values are copied into the ghost boundaries during boundary collection. Since
the boundaries were set to zero before correction, any non-zero values in the boundaries are
correction values that should be applied to computed coarse cells immediately adjacent to the
fine interfaces, but that were not because those coarse cells are on other grids. Those other
grids are the siblings of the corrected grid, so by adding the grid boundaries to the overlapping

sibling interiors, the correction values are properly applied. Because of grid coverage, all

251

Figure 6.66: Sibling correction

252

corrections are constrained to apply to cells within the corrected grid, to cells within siblings,

or to cells on the exterior; in the last case, the correction values are superfluous.

6.4.9 Summary

Ultimately, the AMR algorithms contained in HAMR constitute an achievement of what
has, until now, been merely a long-term interest of the AMR community: a general-purpose
AMR framework. Without the underlying data infrastructure that HAMR provides, general-
purpose AMR is at best difficult, not only because of the data needs of simulations but also
because of the need for the ability to express the data and method relationships. Thus, the
contribution of this dissertation is expressed clearly by HAMR'’s capabilities: to incorporate

adaptivity into an almost limitless variety of structured multiscale simulations.

6.5 HAMR Summary

Fundamentally, the distinguishing characteristics of HAMR that set it apart from other im-
plementations of Berger’s AMR strategy are those qualities which promote generality and
autonomy. Fach component of the HAMR system — the data types, the function library,
the data structure and management, and the implementations of the AMR algorithms —
contribute to these two properties. The wide variety of data types makes possible the in-
corporation of applications and algorithms whose data needs are complex. The flexibility in

performing various basic operations, which the many AMR algorithms require, are provided

253

by the function library in a self-consistent, intuitive manner. The data management in-
frastructure provides not only autonomy, but also the ability to decouple data management
issues from both the AMR algorithms and the application. Finally, the AMR algorithms
themselves take full advantage of the flexibility and generality that are a natural outgrowth
of the properties and capabilities of the other components.

Designing, implementing and testing HAMR was a long and laborious process, the extent
of which was not anticipated at the outset. During the overwhelming majority of this process,
no aspect of the components had any significant value beyond its anticipated future role
within the overall environment. HAMR’s many layers are so completely integrated that it
was 1impossible to employ it for anything useful prior to completion, and this facet of its
development proved intensely frustrating to all involved.

In the end, however, HAMR has proven itself, in design, implementation, and execution.

254

