
AUTONOMOUS HIERARCHICAL ADAPTIVE MESH REFINEMENTFOR MULTISCALE SIMULATIONSBYHENRY JOEL NEEMANB.S., State University of New York at Bu�alo, 1987B.A., State University of New York at Bu�alo, 1987M.S., University of Illinois at Urbana-Champaign, 1990
University of Illinois at Urbana-Champaign, 1996THESISSubmitted in partial ful�llment of the requirementsfor the degree of Doctor of Philosophy in Computer Sciencein the Graduate College of the

Urbana, Illinois



THIS PAGE INTENTIONALLY LEFT BLANK.

i



cCopyright by Henry Joel Neeman, 1996
ii



AUTONOMOUS HIERARCHICAL ADAPTIVE MESH REFINEMENTFOR MULTISCALE SIMULATIONSHenry Joel Neeman, Ph.D.Department of Computer ScienceUniversity of Illinois at Urbana-Champaign, 1996Michael Heath, Michael Norman, AdvisorsModern high resolution numerical simulations of multiscale physical phenomena requireenormous computer resources; however, these resources are largely wasted on subdomainswhose solutions do not require such high resolutions. Adaptive mesh re�nement (AMR)addresses this problem by providing a means to perform high resolution computation only inareas that require it. In the AMR strategy discussed, a nested heirarchy of overlaying grids ofincreasingly �ne resolution | in both space and time| permits high resolution computationin some areas and low resolution in others, either as a set of virtual grids, each encompassingthe entire domain, or as a means of zooming in on a subdomain of interest. However, thisAMR strategy is both subtle and cumbersome to code, and its data requirements are di�cultto manage in a general way. To address this shortcoming, the Hierarchical Adaptive MeshRe�nement (HAMR) system provides support not only for AMR, but also for autonomousdata management, thereby decoupling the numerical techniques of a simulation from theadaptive grid hierarchy to which it it applied.
iii



For Teri

iv



AcknowledgementsThis work was supported in part by National Science Foundation grant ASC 9318185and NASA grant NAG 5-2493.I am grateful to the many people who helped me throughout this endeavor, not only fortheir encouragement and feedback, but also for ideas on how to make things work, or workbetter. Many thanks to my advisors, Michael Norman, Michael Heath and Dennis Gannon1not only for all of their help but also for their patience over the long haul. Much appreciationalso to the rest of my committee, Paul Saylor, Faisal Saied and Donald Hearn, and to EricGolin, who was unable to remain on my committee because of a changes of jobs, but whoprovided able assistance on my prelim.An enormous number of people have provided feedback, support or just listened to merant. I'd like to express my appreciation to them all, but I'm sure I'll forget a few of them, andthey have my apologies in advance. For technical assistance, support and encouragement,my thanks to Dinshaw Balsara, George Baxter, Noam Ben-Ami, Jim Bottum, Steve Brandt,Jim Browne, Karen Camarda, Albert Cheng, Matt Choptiuk, Bob Fiedler, Mike Folk, JillHanson, John Jaynes, Susan John, Ben Johnson, B.I. Jun, Tejas Katwala, Paul and MargaretKlock, Pat Moran, Ruth Ann Nichols, Michele Plante, Ray Plante, Harold Ravlin, BarrySanders, Ed Seidel, Crystal Shaw, Larry Smarr, Chris Song, Doug Swesty, John Towns,Robert Wilhelmson, Marianne Winslett, Jill and Peter White, and David Wojtowicz.1Dennis was unable to attend my defense because of inclement weather, and so does not appear on theo�cial forms, but he has acted as advisor during the course of my studies and research.v



Among the people whose support was crucial to this endeavor are the sta� of the NationalCenter for Supercomputing Applications, particularly Beth McKown, Shirley Shore, DebbieCarrier and especially Jean Soliday. Without them, I would not have been able to take onthis project.Several people provided detailed technical information and helped me to develop thetechniques described in this dissertation. My thanks to Peter Anninos, Marsha Berger,Brian Jewett, Joan Masso, Nelson Max, Manish Parashar, John Shalf, Paul Walker, and YuZhang.If any one person has made HAMR possible, it is Greg Bryan. Not only has he providedme with the physics to showcase my project, he has also contributed keen insight into thedetails of adaptive mesh re�nement techniques. And always with a smile. Thank you, Greg.I also want to thank my family. On the Neeman side, my thanks for love and encourage-ment to my parents, Moshe and Renate, to Jenifer and Ed, to Ed and Maria, and to Lisaand Abby. And for welcoming me to the Murphy side, thanks to Pat, Johanna and Marilu,as well as Dolly, Alec and Kathy.Finally, the person I want to thank the most, without whom I could not have musteredthe con�dence to tackle this project, nor the stamina to see it through, is my beloved wife,Teri Murphy.
vi



Contents1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11.1 Structure of the Dissertation : : : : : : : : : : : : : : : : : : : : : : : : : : : 62 Computational Context : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.1 Data Geometries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.1.1 Types of Meshes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102.1.2 Coordinate Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142.1.3 Location of Variables : : : : : : : : : : : : : : : : : : : : : : : : : : : 172.2 Finite Di�erence Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : 202.2.1 Initial Conditions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 232.2.2 Exterior Boundary Conditions : : : : : : : : : : : : : : : : : : : : : : 242.3 Legacy Codes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 302.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 313 Related Methodologies and Research : : : : : : : : : : : : : : : : : : : : : : 333.1 AMR Strategies on Unstructured Grids : : : : : : : : : : : : : : : : : : : : : 33vii



3.2 Multigrid Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 353.3 Moving Mesh Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 383.4 Tree-Based Re�nement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 393.5 Moving Local Uniform Mesh Re�nement : : : : : : : : : : : : : : : : : : : : 443.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 454 Overview of Berger's Adaptive Mesh Re�nement Strategy : : : : : : : : : : : 474.1 Premise : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 484.2 Layout of the Hierarchy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 484.3 Interpretations of Adaptive Mesh Re�nement : : : : : : : : : : : : : : : : : 524.3.1 Virtual Grids : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 524.3.2 Zooming Grids : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 544.4 Berger's AMR Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 574.4.1 Collection of Ghost Boundary Values : : : : : : : : : : : : : : : : : : 594.4.2 Evolving the Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : 654.4.3 Flux Correction for Conservation : : : : : : : : : : : : : : : : : : : : 654.4.4 Projection from Fine to Coarse Grids : : : : : : : : : : : : : : : : : : 704.4.5 Re�nement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 704.4.6 Selection of Cells to be Re�ned : : : : : : : : : : : : : : : : : : : : : 764.4.7 Clustering Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : 804.4.8 Regridding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 834.5 Evolution of Berger's AMR Strategy : : : : : : : : : : : : : : : : : : : : : : 84viii



4.5.1 Allowed Mesh Types : : : : : : : : : : : : : : : : : : : : : : : : : : : 854.5.2 Overlapping Grids : : : : : : : : : : : : : : : : : : : : : : : : : : : : 854.5.3 Rotated Grids : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 874.5.4 Clustering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 884.5.5 Location of Variables : : : : : : : : : : : : : : : : : : : : : : : : : : : 894.6 Related Research Using Berger's AMR : : : : : : : : : : : : : : : : : : : : : 894.7 Popularity of Berger's AMR Strategy : : : : : : : : : : : : : : : : : : : : : : 925 Autonomous Data Management for Grid Hierarchies : : : : : : : : : : : : : : 955.1 A Data Structure for Grid Hierarchies : : : : : : : : : : : : : : : : : : : : : 975.1.1 Scope and Extent of Data Items : : : : : : : : : : : : : : : : : : : : : 1035.1.2 Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1065.2 Attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1085.2.1 Attribute Categories : : : : : : : : : : : : : : : : : : : : : : : : : : : 1095.2.2 Rules for Referential Attributes : : : : : : : : : : : : : : : : : : : : : 1135.2.3 Attribute Appendices : : : : : : : : : : : : : : : : : : : : : : : : : : : 1165.3 The Speci�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1175.4 The Declaration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1205.5 Modules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1235.6 Data Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1275.6.1 Management of Data Items : : : : : : : : : : : : : : : : : : : : : : : 1275.6.2 Management of Strata : : : : : : : : : : : : : : : : : : : : : : : : : : 129ix



5.6.3 Management of the Grid Hierarchy : : : : : : : : : : : : : : : : : : : 1305.7 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1306 HAMR: A Software Framework for Hierarchical Adaptive Mesh Re�nement : 1336.1 Data Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1366.1.1 Element Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1366.1.2 Parameter Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1386.1.3 Type Attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1506.1.3.1 Structural Attributes : : : : : : : : : : : : : : : : : : : : : : 1506.1.3.2 Functional Attributes : : : : : : : : : : : : : : : : : : : : : 1576.2 The HAMR Function Library : : : : : : : : : : : : : : : : : : : : : : : : : : 1616.2.1 Structured Library Functions : : : : : : : : : : : : : : : : : : : : : : 1626.2.1.1 Memory Management : : : : : : : : : : : : : : : : : : : : : 1626.2.1.2 Assignments : : : : : : : : : : : : : : : : : : : : : : : : : : 1656.2.1.3 Reductions : : : : : : : : : : : : : : : : : : : : : : : : : : : 1656.2.1.4 Comparisons : : : : : : : : : : : : : : : : : : : : : : : : : : 1696.2.1.5 Unary Operations : : : : : : : : : : : : : : : : : : : : : : : 1716.2.1.6 Binary Operations : : : : : : : : : : : : : : : : : : : : : : : 1716.2.2 Dimensional Library Functions : : : : : : : : : : : : : : : : : : : : : 1736.2.3 Method Library Functions : : : : : : : : : : : : : : : : : : : : : : : : 1746.2.4 Spatial Library Functions : : : : : : : : : : : : : : : : : : : : : : : : 1756.2.4.1 Contiguous Operations : : : : : : : : : : : : : : : : : : : : : 176x



6.2.4.2 O�set Operations : : : : : : : : : : : : : : : : : : : : : : : : 1776.2.4.3 Striding Operations : : : : : : : : : : : : : : : : : : : : : : 1806.2.4.4 Marginal Operations : : : : : : : : : : : : : : : : : : : : : : 1826.2.4.5 Incremental Operations : : : : : : : : : : : : : : : : : : : : 1856.2.4.6 Injection Operations : : : : : : : : : : : : : : : : : : : : : : 1886.2.4.7 Projection Operations : : : : : : : : : : : : : : : : : : : : : 1896.2.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1916.3 HAMR Autonomous Grid Hierarchy Management : : : : : : : : : : : : : : : 1936.3.1 HAMR Declaration : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1946.3.1.1 Module Header Declarations : : : : : : : : : : : : : : : : : : 1946.3.1.2 Data Item Declarations : : : : : : : : : : : : : : : : : : : : 1976.3.1.3 Structured Data Declarations : : : : : : : : : : : : : : : : : 1986.3.1.4 Dimensional Data Declarations : : : : : : : : : : : : : : : : 2006.3.1.5 Spatial Data Declarations : : : : : : : : : : : : : : : : : : : 2016.3.1.6 Method Declarations : : : : : : : : : : : : : : : : : : : : : : 2036.3.2 HAMR Declaration Parser : : : : : : : : : : : : : : : : : : : : : : : : 2046.3.3 HAMR Declaration Data Structure : : : : : : : : : : : : : : : : : : : 2076.3.4 HAMR Speci�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : 2096.3.5 The HAMR Data Structure : : : : : : : : : : : : : : : : : : : : : : : 2166.3.6 Data Item Macros : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2216.3.7 Prede�ned Data Items : : : : : : : : : : : : : : : : : : : : : : : : : : 224xi



6.3.8 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2276.4 Algorithms for Berger's AMR in HAMR : : : : : : : : : : : : : : : : : : : : 2286.4.1 Control Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2296.4.2 Integration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2296.4.3 Re�nement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2306.4.4 Regridding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2326.4.5 Boundary Collection : : : : : : : : : : : : : : : : : : : : : : : : : : : 2346.4.6 Incrementing Time Information : : : : : : : : : : : : : : : : : : : : : 2396.4.7 Richardson Truncation Error Estimation : : : : : : : : : : : : : : : : 2406.4.8 Flux Correction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2476.4.9 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2536.5 HAMR Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2537 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2557.1 CMHOG: An Application for HAMR : : : : : : : : : : : : : : : : : : : : : : 2557.2 The Shock Tube Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2577.3 Simulating Comet Shoemaker-Levy 9 : : : : : : : : : : : : : : : : : : : : : : 2597.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2618 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 273Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 277Vita : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 285xii



Chapter 1IntroductionMany modern numerical simulations of multiscale physical phenomena require enormouscomputer resources, in both memory storage and computing time, because their domainsare discretized on high resolution meshes. However, these resources are often largely wastedon subdomains whose solutions do not require the maximum resolutions. Adaptive meshre�nement (AMR) is a class of strategies that address this problem by performing highresolution computation only in areas that require it.Among the possible reasons for avoiding uniformly high resolution meshes are:� some areas have small gradients, so the solution varies little among neighboring cells;� in some areas the solution can be computed with su�cient accuracy on a low resolutionmesh;� there may be many redundant phenomena in the domain, only a few of which need to1



be studied at high resolution;� various phenomena of interest in the simulation may occur at widely varying time andlength scales.The literature for adaptive mesh re�nement is extensive, dating back over more thantwenty years and continuing today as a rich �eld of research. AMR strategies have beendeveloped for elliptic, parabolic and hyperbolic systems. The many approaches vary con-siderably, in both philosophy and implementation. AMR strategies have been successfullyapplied to� computational uid dynamics (CFD),� computational astrophysics,� structural dynamics,� magnetics,� thermal dynamics,� microwave theoryand many other areas of numerical research.However, little work has been done in generalizing the adaptive strategies into exible,modular systems that promote relatively quick and simple \plug-and-play" approaches forcreating new adaptive simulations, and this lack is particularly noticeable in the context2



of simulations on structured meshes. Such general-purpose systems require a number ofimportant properties, in order to provide maximal bene�t to the research community:� Minimal knowledge of the system to add new applications.� A simple interface to data and methods.� Sophisticated memory management, to relieve the scientist of the burden of allocatingand deallocating grid space as the collection of grids evolves.� An extensive library of commonly used subroutines.� Geometric exibility in mesh type, coordinate system, and staggered grid positioning,for simulations that have variables at various positions in and around each cell | forexample, velocities at the nodes, energy uxes at the edge centers and densities at thecell centers.� Expandability{ to adjust to the needs of various numerical schemes;{ to incorporate new types of grids and new coordinate systems;{ to be portable to many platforms | written in commonly available languages likeC and Fortran;{ to apply to many hardware architectures.3



� Algorithm exibility, because some sophisticated simulations require algorithms thatare rather complex.� Clustering optimization, in which cells to be re�ned are decomposed into conformallyrectangular grids that make the best possible use of the capabilities of the platform.In the AMR strategy discussed in this dissertation, developed by Marsha Berger andcollaborators, a nested heirarchy of overlaying grids of increasingly �ne resolution | in bothspace and time | permits high resolution computation in some areas and low resolution inothers. At each level of resolution, a set of subgrids covers those portions of the domain thatrequire at least that resolution, and each of these subgrids is in turn completely containedin some subset of the grids at the immediately coarser level. In some cases, the types ofphenomena encountered at each level are of widely varying scales, so the re�nement ratiomay vary from level to level. The strategy can be thought of either as a set of increasingly�ne virtual grids, each encompassing the entire domain, or as a means of zooming in on asubdomain of interest. Most importantly, it addresses the concerns listed above.The showcase for the research conducted in this dissertation is an implementation of thisAMR strategy, called the Hierarchical Adaptive Mesh Re�nement (HAMR) system, whichnot only implements Berger's AMR strategy, but also addresses the problem of applying thisstrategy to existing simulation kernels in a manner that is both intuitive and convenient.Unlike other implementations of Berger's strategy, HAMR is a general-purpose approach thatcan be applied to a wide variety of numerical schemes, because it makes very few simplifying4



assumptions about applications, their numerical techniques, and the data they require.The design of HAMR is driven in large part by a desire to decouple the physics of asimulation from the computing environment in which it operates, and especially from theparticulars of how data are allocated, how they are managed, and how they interact withone another and with the methods that operate on them. The value of this approach isthat it isolates the scienti�c researcher from details that are irrelevant to the subject of theexperiment, and that can detract from the reasons for embarking on the research in the �rstplace. In today's rapidly evolving research climate, too many scientists are having to learntoo much about too many topics that have little direct bearing on the actual nature of thephenomena they are studying, because the methodologies with which they are presented,while compellingly powerful, are often subtle and di�cult to manage.Berger's AMR strategy is such an extreme example of this situation that it has beenlargely ignored as a practical approach to improving simulation e�ciency. Yet the power ofthe strategy is not in dispute: Berger, her collaborators, and the few other researchers whohave used her techniques have reported outstanding improvements in performance, especiallyin experiments in three dimensions | precisely the kinds of experiments that contemporaryresearch attempts to address. But despite widespread acknowledgement of the importanceboth of adaptive techniques in general and of Berger's strategy in particular, its use hasremained con�ned to a small group of scienti�c researchers.The motivation for the development of HAMR is to ameliorate precisely this situation.5



1.1 Structure of the DissertationThis dissertation is composed of eight chapters, of which this chapter is the �rst. The nextthree provide background on numerical issues and the adaptive strategy of concern, whilethe �nal four discuss the associated doctoral research.Chapter 2 describes the computational context in which this research was performed.Speci�cally, it covers the geometric issues associated with structured simulations, such asmesh types, coordinate systems and staggerings; �nite di�erence methods, including theirbasic properties, as well as start-state issues such as initial and boundary conditions; and�nally, legacy codes, which present a signi�cant implementation challenge in the design ofgeneral-purpose AMR environments. The purpose of Chapter 2 is to lay down a clear, well-de�ned set of motivations, which will explain both the design of Berger's AMR strategy andits implementation in HAMR.Chapter 3 examines a variety of related methodologies and research, including AMRstrategies on unstructured grids, traditional multigrid methods, moving mesh methods,tree-based AMR approaches, and moving local uniform mesh re�nement. This survey ofrelated literature will show the place of Berger's AMR strategy in the battery of numericaltechniques, with respect to the variety of approaches to numerical simulation, and morespeci�cally to the �eld of adaptive methods.Chapter 4 provides an overview of the AMR strategy of Berger and collaborators. Thisoverview is presented primarily from a theoretical point of view, but includes some discus-6



sion of implementation issues and results of experiments using the strategy. Speci�cally,the chapter examines the premise of Berger's strategy; the layout of grid hierarchies; in-terpretations of AMR, including virtual grid and zoom interpretations; an overview of theAMR algorithm, including boundary value collection, evolution, ux-corrected conservation,projection, re�nement, selection, clustering and regridding; the evolution of Berger's AMRstrategy over the last decade and a half, including changes in allowed mesh types, overlappinggrids, rotated grids, the clustering algorithm and staggerings; research that has employedBerger's strategy; and the relative lack of popularity of this strategy among computationalscientists. Thus, Chapter 4 is designed to clarify not only what Berger's AMR is and how itworks, but also how it has been used and how the numerical simulation research communityhas received it.Chapter 5 describes a theoretical framework underlying autonomous data managementfor grid hierarchies. It delineates a data structure for representing grid hierarchies, includingthe scope and extent of data items as well as the categories of data types that are required;attributes of data and methods, including several attribute categories, rules governing certainattributes, and the means by which attributes are attached to the appropriate data items;the speci�cation, which describes the data, methods and their relationships; the declaration,a user-produced description of this same information; modules, which encapsulate variousoperations and categories of data; data management, of data items, of strata and of thegrid hierarchy. In this way, Chapter 5 clari�es the theoretical underpinnings upon which theimplementation, HAMR, is built. Furthermore, these theoretical discussions motivate the7



explanation of the implementation itself, in the chapter that follows.Chapter 6 describes the Hierarchical Adaptive Mesh Re�nement system, and is dividedinto four sections, each of which corresponds to one of the major components of HAMR. The�rst section discusses HAMR data types, including element types, parameter types, and typeattributes. These types and their attributes apply well to the wide variety of data needs, andto the myriad relationships these data can exhibit, for many classes of computational simu-lations. The second section discusses the low level function library, including operations onstructured types, on dimensional types, on methods, and on spatial types. These operationsprovide the computational foundation for the bulk of the functionality of both data man-agement and the AMR algorithms. The third section describes HAMR's implementation ofthe autonomous data management concepts laid out in Chapter 5, including the declaration,its parser, its data structure, the speci�cation, the grid hierarchy data structure, data itemmacros, and prede�ned data items. By encapsulating the data management within theseconstructs, these operations can be completely decoupled from the application itself. The �-nal section describes the implementation of AMR algorithms for Berger's strategy, includingcontrol, integration, boundary collection, extrapolation, re�nement, regridding, truncationerror estimation, selection, clustering, correction and projection. These algorithms do notmerely implement Berger's AMR; rather, they expand and improve on it, by providing max-imal generality and code reusability.Chapter 7 presents the results of simulations performed using HAMR.Chapter 8 presents conclusions and a summary.8



Chapter 2Computational ContextThere are a variety of computational issues involved in numerical simulation techniques thata�ect the manner in which adaptive mesh re�nement must be designed and implemented.Both the AMR scheme and the nature of the simulation itself impose restrictions on thegeneral AMR framework, and on the engineering details of software construction. Amongthe computational issues that must be addressed are the geometries on which simulationsare performed, the �nite di�erence schemes used, and the characteristics and requirementsof legacy codes.2.1 Data GeometriesNumerical data come in a variety of geometries. Among the geometric degrees of freedomare mesh types, coordinate systems and staggerings.9



2.1.1 Types of MeshesA �eld is a mapping from one space to another; for example, the mapping T : <3 ! <describes temperature T in 3D space. A mesh is a collection of points or nodes and somenotion of connectivity among them. A grid is a set of discrete approximations of �eldsmapped onto a mesh. (In the literature, mesh and grid are often used interchangeably. Inthis dissertation, they refer to di�erent concepts, to reduce ambiguity.)Meshes come in several types (Figure 2.1). Each mesh type has its own means of speci-�cation, and for each there are associated strategies for re�nement.First, some meshes are empirical; that is, they are collections of nodes that have nointrinsic connectivity among them. Empirical meshes can be re�ned by generating new nodesin areas that require higher resolution. Alternatively, a connectivity can be imposed on aempirical mesh by means of Delauney Triangulation [WS90], and then re�nement methodsappropriate for unstructured meshes (see below) can be used.Most numerical simulations use meshes with intrinsic connectivity. Of these, the mostgeneric in construction, and the most complicated to specify, is the unstructured mesh, whichis a collection of nodes and a description of the connectivity between them. This connectivityis generally speci�ed by the subgroup of nodes that delimit each cell in the mesh.Unstructured meshes have arbitrary connectivity and geometry. Typically, each cellis the simplex [Hof89], or minimal polytope, of the mesh's dimensionality (for example,[ZSZZ90], [HST90], [RMC89]) | lines in one dimensional space, triangles in two dimensions,10



(x2; y2) u2(x1; y1) u1(x3; y3) u3np (x2; y2) u2(x3; y3) u3(x1; y1) u1np nc
IrregularConformal Rectilinear(x2;1 ; y2;1) u2;1

MeshesEmpirical Unstructured Structured

nx ny(x1;1 ; y1;1) u1;1 nx ny(xmin; ymin)(xmax; ymax)u1;1u2;1

... (Pnp ; P2; P4)...(P3; P4; P1)(P2; P3; P4)(P1; P2; P3)(xnp ; ynp ) unp...

unx ;ny......(xnx;ny ; ynx ;ny ) unx ;ny

(xnp ; ynp ) unp
nx nyy1 y2 ::: ynyx1 x2 ::: xnx IsotropicRegular
u1;1u2;1unx ;ny...Figure 2.1: Hierarchy of mesh types11



tetrahedra in three dimensions | but this property does not always apply (for example,[SC89], [MGS88]). In fact, in some cases a single mesh can consist of various di�erentsimplicial complexes.Mesh re�nement on unstructured meshes is typically achieved by placing one or more newnodes on the surface of, or inside, each cell that is to be re�ned | and perhaps adjustingthe positions of the nodes | and then connecting the nodes of the cell to the new node(s),thereby creating a new set of �ner cells from the coarse cell (for example, [LR88], [MF88],[TRS90]).A structured mesh, unlike an unstructured mesh, has its connectivity implicit in thespeci�cation of the mesh; that is, the order in which the nodes are speci�ed determines theirconnectivity. Speci�cally, a structured mesh is an array of nodes, each connected to twoothers along each axis (except for those on a surface of the mesh, which are connected tofewer). The cells of a structured mesh are implicitly de�ned by the relationships betweennodes: a cell in a k{dimensional mesh is the space bounded by 2k nodes connected as a(conformal) cube. Thus, structured meshes are arranged in the same manner as arrays incomputer memory.Structured meshes are more di�cult to re�ne than unstructured meshes, and are thusthe subject of this dissertation. This di�culty arises from the three possible approaches tostructured mesh re�nement:� cells can be added to the existing mesh, in which case its implicit connectivity is lost,requiring that the associated structured mesh solution method be abandoned;12



� nodes can be shifted about the physical domain to follow the most signi�cant phenom-ena, an approach which does not allow the total number of cells to grow, and which isapplicable to only the most general structured mesh geometries;� multiple structured submeshes of varying resolutions can be added and their interac-tions controlled, requiring considerable additional coding to manage both the re�ne-ment and the associated data structure, but allowing both arbitrary re�nement andthe use of solution methods applicable to simple, �xed geometries.The most general kind of structured mesh is the conformal mesh. It has the connectivityof a structured mesh, but its geometry | that is, the placement of its nodes and the shapesof its cells in physical space | is arbitrary. It is speci�ed by the positions of its nodes. Con-formal meshes range from slight perturbations o� the Cartesian axes (for example, [MLP90],[Kim90], [DT90]) to almost totally deformed (for example, [ALP90], [SPB89]).Less general than conformal meshes are regular meshes. These meshes have mesh linesparallel to the coordinate axes, and thus their geometric properties are far simpler than thoseof conformal meshes. The two major types of regular meshes are rectilinear and isotropicmeshes. Rectilinear meshes have arbitrary spacings along each axis, so that cells may varyin size (for example, [Dem91], [Jia89]). They can be described by the positions of the nodesalong each axis. Isotropic meshes are the simplest of all, a special case of rectilinear mesheswith all cells of identical geometry; they can be completely described by two diagonallyopposite corners of the mesh and the number of nodes along each axis.13



In some cases, a simulation will use several interconnected structured meshes, or blocks,rather than a single mesh. This approach permits cavities, regions inside the physical domainthat are not contained in the computational domain. For example, a jet engine can becomposed of many blocks, so that the boundaries abut the major components of the engine| the hub, splitter and nacelle | and the domain is the air passages inside the engine[Ste91]).Topologically, structured meshes are identical; their di�erences are exclusively geometric.This shared property allows many kinds of structured meshes to be subject to the same kindof mesh re�nement strategies, because the meshes can all be treated as conformal cubes ofthe appropriate dimension. Only the aspects of the re�nement strategies that directly relateto physical geometries of the meshes | for example, interpolation | need to be modi�ed toapply the strategies to the di�erent types of structured meshes.2.1.2 Coordinate SystemsA mesh can be de�ned on many di�erent kinds of coordinate systems (Figure 2.2), and ageneral-purpose approach to AMR must address the possibility of incorporating this geo-metric variety.The simplest and most common coordinate system is the Cartesian or rectangular coordi-nate system. Cartesian coordinates can be speci�ed completely implicitly and are commonlyused to describe the real world, so they are a natural basis for numerical simulation.However, many meshes are instead de�ned in polar coordinates, typically one of three14



Cartesian2D 3D1D x y x xz
y

Polar 2D Cylindrical 3D Spherical 3D
�� � � ���z

Polar
Curvilinear1D 3D2Du1 u2u1 u3u1u2Figure 2.2: Coordinate systems15



types. The simplest is two dimensional polar coordinates; in three dimensions, the twopolar systems are cylindrical (for example, [Bor90]) and spherical (for example, [Bar89]). Inprinciple, polar coordinates in dimensions higher than three are a natural extension of 3Dpolar coordinate systems.The most general coordinate systems are curvilinear. Such systems must be explicitlydescribed and may be only an approximation of the true coordinates desired. Also, it is im-portant to distinguish between curvilinear coordinates and conformal meshes; the latter aretypically de�ned in Cartesian coordinates. In some cases, conformal meshes are transformedinto regular meshes as the Cartesian space is mapped into an appropriate curvilinear space(for example, [ALP91]).A special kind of mesh used in 3D polar coordinates is the 212D polar mesh. For example, a2D rectangular plane can be swept about the z{axis, producing a 212D cylindrical mesh; a 2Dpolar semicircular plane can be swept about a vertical line, producing a 212D spherical mesh(Figure 2.3). Computation and re�nement occur on the 2D rectangular or polar mesh, butthe physical domain is a 3D cylinder or sphere, respectively. (An example of an applicationthat uses 212D meshes can be found in [SNM89]).Given this multiplicity of coordinate systems, the best means of achieving a general-purpose AMR system is to isolate the meshes' geometric qualities as much as possible.Speci�cally, the most general approach to AMR includes AMR algorithms most of whichrely on indices within the computational domain, rather than on physical positions. As forAMR algorithms which require physical positions, they must be decoupled from the rest of16



Figure 2.3: Cylindrical and spherical 212D meshesthe AMR system, and they are rendered most e�cient by incorporating whatever geometricsimpli�cations can be reliably assumed.2.1.3 Location of VariablesMany multivariate applications require staggered grids; that is, grids whose variables existat various loci within and on the interfaces of each cell. In many cases, these loci will eitherbe at the nodes of the cells, or staggered half a cell width along each of some combinationof axes; that is, at edge, face and cell centers (Figure 2.4). Thus, in 1D systems, a grid canhave variables at the nodes and at the cell centers; in 2D, at the nodes, at the edge centersand the cell centers; in 3D, at the nodes, edge centers, face centers and cell centers, and soon. In one example [LM92], stream function variables such as velocity are stored at mesh17



2D Grids
3D CellTypical2D CellTypical1D CellTypical

CellNode EdgeFaceKEYNode GridStaggered GridFigure 2.4: Variable loci on staggered grids18



T(a) ss vpv(b)
s s u uFigure 2.5: Staggered grid examplenodes, while temperature is located at the cell centers (Figure 2.5a). In other examples[TLVR91], [WH92], velocities are stored at cell edges and other quantities (e.g., pressure) atcell centers (Figure 2.5b).However, meshes are not always staggered by half a zone size along each axis. In somesimulations, variables can be at �xed but arbitrary fractions of a zone size within each cell(for example, [NP87]).The AMR-related problem that these staggerings create arises because many AMR algo-rithms produce results over all variables. Each such result is located on a speci�c staggering,and all relevant variables that are on other staggerings must have their results transferredto the staggering of the result. For example, if the region to be re�ned is selected based onthe values of the cell-centered density and the face-centered velocities, then the results forthose variables must be merged to produce an overall re�nement region, which would be theunion of the individual variables' re�nement regions.19



2.2 Finite Di�erence MethodsAt the heart of every time-dependent numerical simulation is a solver, a module that evolvesthe solution vectors of a partial di�erential equation forward in time by a speci�ed timeinterval. The solver captures the physical processes that govern the application; the restof the simulation software exists primarily to support the solver. Among the most popularcategories of spatially discretized numerical schemes are �nite di�erence methods.In �nite di�erence methods, the solver is typically a function that maps the initial valueat a locus and at several loci surrounding it to a new value at the locus, such as wouldbe required for an initial value partial di�erential equation. For example, a simple two-dimensional solver might look like so:subroutine solve (u, ni, nj, istart, iend, jstart, jend, old, new)integer ni, nj, istart, iend, jstart, jend, old, newreal u(ni,nj)integer i, jdo j = jstart, jenddo i = istart, iendu(i,j,new) =F(u(i-1,j-1,old),u( i,j-1,old),u(i+1,j-1,old),u(i-1, j,old),u( i, j,old),u(i+1, j,old),u(i-1,j+1,old),u( i,j+1,old),u(i+1,j+1,old))enddoenddoendThis example has a three point stencil on each spatial axis and a two point stencil on the timeaxis, and is referred to as a forward time, centered space scheme (Figure 2.6). In many cases,20



i� 1 i i+ 1tt+ 1j + 1 j � 1Figure 2.6: Forward time centered space stencili� 1 i i+ 1i� 2i� 3 i+ 2 i+ 3 i+ 4tt+ 1j + 1 j � 1j � 2
Figure 2.7: Stencil with a variety of component valuesthe mapping function F will actually operate not just over the range [i-1:i+1][j-1:j+1]but rather over [i-s:i+s][j-s:j+s] for some constant stencil value s � 1. In fact, thestencil value can be di�erent along each axis, and indeed on each side of each axis; that is,there may be di�erent values for sxmin, sxmax, symin and symax (Figure 2.7).Finite di�erence methods are subject to two primary concerns: consistency and stabil-ity. Consistency means that the truncation error � | that is, the error inherent in the�nite di�erence approximation of partial derivatives | approaches zero as resolution growsarbitrarily �ne; that is, for zone width �x and time interval �t,lim�x!0;�t!0 � = 021



Sod expresses this as a case in which \... the di�erential equation fails to satisfy the �nitedi�erence method by an arbitrarily small amount" [Sod85]. Stability is the condition that thegrowth of errors in the solution is bounded for su�ciently small �t. Haltiner and Williams[HW80] give three de�nitions for stability:� \ ... [The scheme's] solutions remain uniformly bounded functions of the initial statefor all su�ciently small �t ...."� \... When the corresponding di�erential solution is bounded, a �nite di�erencescheme is unstable if, for a �xed ... conditions, there exist initial disturbances forwhich the ... solution becomes unbounded ...."� \... [T]he cumulative e�ect of all round-o� errors remains negligible as n increases."The Lax Equivalence Theorem [Ric57] implies that a consistent, stable �nite di�erencemethod will converge | that is, approach the true solution | for appropriate initial condi-tions and discretization.A very common stability condition is that the ratio �t=�x falls within a particularrange, a condition of considerable signi�cance for adaptive mesh re�nement, since under thiscondition stability does not depend on the absolute resolution, but rather on the ratio oftemporal to spatial resolution. Of course, an ideal problem is one that is both stable andconsistent, and for which � approaches zero very rapidly relative to �x and �t. In practice,however, this case rarely arises, and in fact various subregions of the domain can convergeto the true solution at di�erent rates. 22



In experimental numerical simulation, the analytic solution is not known; if it were, therewould be no point in imposing a discretization and a �nite di�erence scheme on the di�eren-tial equation, when the solution could be obtained directly. However, many researchers useproblems with known analytic solutions as tests for examining new numerical techniques,since the numerical result can be directly compared to the true solution.A �nite di�erence method requires two kinds of input information: the initial conditionand the boundary conditions.2.2.1 Initial ConditionsThe initial condition provides a starting state for a simulation, from which the progress ofits evolution can be examined. At the implementation level, initial conditions fall into twocategories: those which are explicitly stored and must be loaded into the solution vector atruntime, and those which can be calculated analytically.Among explicitly stored initial conditions are phenomena that are observed in nature.For example, McInnes, McBride and Leslie simulated a cold front over southeastern Australiainitialized from \... objective analyses produced routinely by the Bureau of Meteorology ...."[MML94]. Another form of explicitly stored initial condition is that which has been computedin a separate numerical simulation. For example, Bertschinger's COSMICS package generatesinitial conditions for cosmological simulations [Ber95].As for analytic data, many classic problems have analytic solutions that make them idealcandidates for exploring the accuracy of numerical techniques. For example, the transport23



equation [MB92] d�dt + r(�c) = 0is an excellent initial test of �nite di�erence methods, using the analytic solution at timet = 0 for the initial condition. Similarly, initial conditions can be based on scalar values; forexample, a shock tube begins with each grid point of each variable initialized to one of twoscalar values for that variable, depending on which side of the shock interface it is located.Finally, some of these techniques can be combined. For example, Wilhelmson and col-laborators conducted a storm simulation based on observed data from a severe storm thatoccurred in the southwestern United States, which was then perturbed to produce more ap-propriate conditions [WJS+90]; Dudhia and Moncrie� simulated a squall line using a verticalsounding translated to obtain horizontally uniform thermodynamic and wind pro�le, whichthey then perturbed analytically. [DM89].2.2.2 Exterior Boundary ConditionsBoundary conditions for �nite di�erence methods are often implemented by providing a setof additional cells surrounding the active computational domain (Figure 2.8). These ghostboundaries have values which express the boundary conditions of the di�erential equationdiscretized by the �nite di�erence method. Speci�cally, the ghost boundary values are pro-vided to cover the stencil of the outermost cells of the computational domain, but theirvalues are not generally considered part of the overall solution of the di�erential equation.24



Ghost Boundary Ghost Boundary
Grid InteriorComplete Grid

Figure 2.8: Ghost boundary regionBoundary conditions fall into two categories: those on boundary regions that are actuallycontained inside the overall computational domain, and those that are exterior to the domain.In the context of adaptive mesh re�nement, this distinction is critical. Interior boundaryconditions are a separate case that will be discussed in the context of AMR. However, exteriorboundary conditions are universal; that is, all �nite di�erence methods require them in someform.Among the most common types of exterior boundary conditions (Figure 2.9) are:� periodic;� reecting;� inow; 25



Inow Outow
Reecting
Periodic

Figure 2.9: Common exterior boundary conditions26



Figure 2.10: Grid with copied extrapolation boundary� outow;� singularity.Periodic boundaries have continuity of solution values on opposite ends of the mesh;that is, the \rightmost" cell along an axis is computationally adjacent to the \leftmost"cell. Conceptually, a periodic boundary is like an in�nite chain of identical domains, in bothdirections along each periodic axis. Reecting boundaries are mirror images; that is, theboundary value k exterior loci outside the domain interface is identical to the computedvalue k interior loci inside the domain interface. Inow boundary conditions often haveanalytic values | for example, the amount of material being ejected from a source | andoutow boundaries typically have extrapolated values. For example, the simplest outowextrapolation is to set the exterior boundary values equal to the computed value closest tothe exterior interface (Figure 2.10). Finally, singularity conditions are applied to collectionsof computational values that represent a single physical position; for example, the center ofa circle or sphere in polar coordinates (Figure 2.11).27



� �Figure 2.11: Grids with singularitiesMany applications have combinations of these types of exterior boundary conditions. Forexample, Anninos, Norman and Anninos [ANA95] study cosmological sheets with periodicboundaries along the x-axis, a reecting boundary at ymin and an inow boundary at ymax(Figure 2.12). In fact, exterior boundary types can be combined within a single boundary.For example, Stone and Norman [SN93] discuss a two-dimensional protostellar jet simulationwith outow boundaries at xmax, ymin and ymax, and with a reecting boundary at xmin, exceptfor a few zones in the center of that boundary, which are the inow of the jet (Figure 2.13).The almost limitless variety of exterior boundary conditions is a signi�cant obstacle tothe development of general-purpose AMR frameworks. The problem is not simply that manyboundary conditions are entirely application-dependent, and therefore require the incorpo-28



PeriodicPeriodic Inow
ReectingFigure 2.12: Exterior boundaries for cosmological sheets

InowReectingReecting OutowOutow
Outow

Figure 2.13: Exterior boundaries for a protostellar jet29



ration of problem-speci�c subroutines. A far more serious problem is that some boundaryconditions require access to multiple subdomains which may be stored discontiguously. Forexample, a periodic boundary condition requires access to the subdomain whose position iseither laterally or diagonally opposite from the interface associated with the boundary (ascan be seen in Figure 2.9), and presumably this second subdomain, which contributes to theboundary values of the �rst subdomain, should be of the same resolution as the �rst. Thus,the algorithms which implement these boundary conditions require considerable knowledgeabout the data management approach of the system.2.3 Legacy CodesThe use of computers for numerical simulation is a mature �eld. Over the years, scientistshave written, tested and used hundreds of simulation codes. Many of these codes have existedin various forms for years or even decades, and have been altered over time to expand andimprove them. In addition, the many experiments that have been conducted using thesecodes constitute a testbed for their reliability and accuracy, and in some cases the codeshave been algorithmically veri�ed. Also, these codes often have multiple contributors, eachadding modules or even statements within existing modules. Such codes are called legacy orhistorical codes, and more colloquially dusty decks.Understandably, scientists with well-established legacy codes are reluctant to replacethem with new, completely rewritten codes. A signi�cant risk in replacing a legacy code is30



that some subtle aspect of the code might be overlooked or misunderstood, and that overthe long term a seemingly minor error might have serious consequences. Also, many ofthese codes are thousands of lines long; rewriting them from scratch requires a signi�cantcommitment of time and e�ort, which could otherwise be directed toward scienti�c research.Thus, legacy codes present inherent obstacles to creating a general-purpose AMR frame-work. The challenge is to develop the AMR system in such a way that an existing code canbe incorporated in a simple, consistent manner, with minimal reinstrumentation. An idealAMR system would allow a legacy code to be incorporated with no recoding whatsoever,or with the recoding fully automated, but such an approach is unrealistic in the near term.Still, a near-ideal AMR system would be able to incorporate a legacy code with only a fewhours of additional programming.2.4 SummaryA variety of computational issues contribute to the requirements of adaptive mesh re�ne-ment systems, especially those intended to be useful over a wide range of research topics,applications, platforms and numerical schemes. Each of these issues presents a signi�cantchallenge to those who would design such an AMR system.Geometric and topological issues, such as mesh types, coordinate systems and stagger-ings, require a broad-based approach to infrastructure design, the �rst two because theadjustments they necessitate must be decoupled as much as possible from other aspects of31



the system, and the last because the various staggerings may need to interact, and so thenotion of staggering must be fully embedded within the system.The issues surrounding �nite di�erence methods have perhaps the most signi�cant impacton the design of general-purpose AMR systems, because such methods are the reason thatstructured AMR systems are designed in the �rst place. Both the abstract mathematicalunderpinnings of these methods and the practical implementation details have fundamentalrepercussions in the nature of multipurpose adaptive environments.Finally, a great many of the simulations in use today are codes with long histories,which would be di�cult to redesign or to rewrite from scratch. Therefore, a general-purposeAMR system must allow existing codes to be incorporated with minimal recoding by theapplication scientist.

32



Chapter 3Related Methodologies and ResearchUnlike adaptive techniques for unstructured meshes, which are relatively simple to deviseand to implement, all of the existing AMR strategies on structured meshes are complex andsubtle, and they su�er from a variety of disadvantages that maymake them appear unsuitableor unattractive for many applications. But their study, and the study of related techniquessuch as traditional multigrid methods, can provide insight into both the requirements ofstructured AMR and the means by which it can best be achieved.3.1 AMR Strategies on Unstructured GridsThe literature for computational simulation of physical phenomena contains a wealth ofmaterial about adaptive mesh re�nement on unstructured meshes, as noted earlier. Anobvious possibility, then, is to reformulate existing structured simulations in an unstructured33



context, and then applying the unstructured AMR techniques.However, it is entirely unclear whether such reformulations are ideal or even practical.An illustrative example of this dilemma is provided by computational uid dynamics (CFD)research, because little of the unstructured AMR literature describes the use of such gridsfor CFD. Mavriplis [Mav90] points out[The use of unstructured mesh techniques] in the �eld of computational uiddynamics (CFD) constitutes a relatively recent phenomenon. This situation isprobably due to the large overheads generally incurred with unstructured meshtechniques, .... The advantages of unstructured meshes lie in the ability theya�ord for exibly discretizing arbitrarily complex geometries, and in the easewith which they lend themselves to adaptive meshing techniques, ....Mavriplis' point is well taken, but with the advent of the kinds of AMR strategies thatthis dissertation addresses, unstructured CFD techniques | and particularly unstructuredAMR for CFD | may not be necessary. This point leads to an important criterion fordeciding whether a \plug-in" AMR system is easy to use: does it require that the scientistcompletely reformulate the simulation of interest?To adopt Mavriplis' methods, one must restate one's physical properties in the contextof an unstructured grid. This requirement is likely to be needlessly burdensome on thescientist and is therefore far from ideal. Rather, an AMR system should permit existing \o�the shelf" simulations to be incorporated quickly and with a minimum of recoding by the34



scientist. Therefore, a superior alternative to Mavriplis' suggestion is to provide an AMRtechnique which can be applied directly to a structured simulation.3.2 Multigrid MethodsMultigrid methods are a class of simulation techniques which illustrate important principlesrelated to structured adaptive mesh re�nement. These methods solve complex, sophisticatedsimulations by rapidly reducing the error inherent in many single grid iterative methods.Multigrid methods employ a hierarchy of grids of varying resolution, each grid coveringthe entire computational domain (Figure 3.1). The underlying premise is that, althoughiteration on a �ne mesh quickly eliminates the high frequency components of error, lowfrequency components take much longer, resulting in an ine�cient or inaccurate solution[SH90]. However, by iterating on meshes of various scales, the smoother error componentscan be reduced quickly as well.Multigrid methods have several di�erent scheduling algorithms (Figure 3.2). The simplestschedule is the V-Cycle, in which the system cycles from the coarsest to the �nest grid andthen back. A popular cycling schedule for multigrid methods is the Full Multigrid V-Cycleor FMV schedule. Here, information is transferred from the �nest grid to the coarsest grid,by stepping upwards and downwards in resolution to a �nal, most accurate set of meshes.Another popular cycling schedule is theW-cycle, named for the letter it resembles. In thisschedule, iteration begins at the coarsest mesh, recursively cycles down through increasingly35



Figure 3.1: Multigrid hierarchy
36



Order of Computationh=r3h=r2hStepSize h=r
hStepSize h=r3h=r2h=r Order of Computation

hStepSize h=r3h=r2h=r Order of Computation V-Cycle
FMV-Cycle
W-CycleFigure 3.2: Multigrid cycle schedules37



�ne meshes to the �nest, and then slowly moves up and down, interleaving coarser and �ner,until it returns to the coarsest mesh. In some cases, the reverse strategy is used, with themajority of iterations being performed on the coarsest mesh (for example, [Mav89]).Multigrid methods are generally applied to systems of equations on which informationis propagated very quickly | for example, elliptic systems | and thus every cell a�ectsevery other cell. In contrast, other systems propagate information very slowly; for example,hyperbolic systems typically transfer information only between cells that are very close toone another during any given integration.Adaptive strategies which rely on multiple grids of varying resolution have much in com-mon with traditional multigrid methods, which are a special case of certain classes of struc-tured AMR strategies. Thus, such a general-purpose AMR implementation is likely to havethe added bene�t of also being useful for traditional multigrid simulations, and for simula-tions which employ a static collection of grids of one or many resolutions.3.3 Moving Mesh MethodsMoving mesh methods are a class of adaptive strategies that re�ne by redistributing meshpoints, rather than by creating new meshes at di�erent resolutions. As Miller says [Mil83],The MFE [Moving Finite Element] method was developed to handle thosemany nonlinear hyperbolic and parabolic problems that develop shocks or othersharp moving fronts. 38



In MFE, nodes move around the domain and are concentrated on the front; the number ofnodes remains constant throughout.The problems with MFE, and with moving mesh methods in general, are� the methods are inherently non-uniform, so existing uniform grid solvers must be rad-ically altered;� the number of mesh points does not grow, but the complexity of the solution can, soa given mesh size may prove insu�cient for some evolving simulation, causing someregions which require very high resolution to \steal" nodes from other regions whichare then insu�ciently resolved.Thus, while moving mesh methods may be useful for a limited class of applications,they are inappropriate for a considerable portion of the simulation codes currently available.The requirement that uniform mesh codes be entirely reformulated eliminates a great manysimulations, particularly those based on legacy codes, which makes moving mesh methodsunattractive to many researchers.3.4 Tree-Based Re�nementGannon describes a mesh re�nement strategy in which each cell of a mesh is split intoidentical subcells [Gan80]. The description of the mesh is stored in a quadtree-like structure(Figure 3.3). Tests of this re�nement strategy produce good results. Adjerid and Flaherty39



32 5 6 7 84 1211109
O1 2 3 45 68 9 101112Figure 3.3: Mesh and tree of quadtree-based re�nement strategy[AF88] describe a similar method.However, the constraint on the re�nement ratio, in which cells are exactly halved in eachdirection, is insu�ciently exible, since it fails to permit the arbitrary scale control necessaryfor sophisticated multiscale systems. If a simulation depicts phenomena that have a smallnumber of widely disparate length and time scales | for example, a large portion of theuniverse, a cluster of galaxies and a galaxy | then these scales must be implemented bymany intervening levels, requiring considerable storage space and computation time, muchof which will be wasted in intermediate and uninteresting scales. On the other hand, ifthe simulation requires a variety of scales based on optimizing the adaptation, then theappropriate re�nement factors must be accessible.Thompson, Leaf and Van Rosendale describe a similar approach on a staggered, adaptive,multilevel grid, which they use to solve incompressible Navier-Stokes equations [TLVR91].As in the approach of Adjerid and Flaherty, this strategy employs a quadtree structure40



1,1
2,2 3,12,1

1,1 2,1 2,2 3,1NILNILNILNILNILNIL2,12,2NILNILNILNIL
2,21,11,1NILNIL1,13,1NILNILNILNIL

NIL1,11,11,1NILNILNILNILNILNILNIL
NIL2,1NILNIL2,12,1NIL1,1NIL1,1NIL

RELATIONSNEXTPARENTNEIGHBORKIDAUNTFigure 3.4: Mesh and tree of Thompson, et al.'s re�nement strategy(Figure 3.4). The strategy begins with a single grid | a patch in the authors' terminology| that is adaptively re�ned in a quadtree-like manner. Each cell to be re�ned on a givenlevel l becomes a patch on level l + 1, complete with its own set of interrelationships withits parent, its parent's siblings | the authors call them aunts | its own siblings | theauthors' term is neighbors | and its children. More signi�cantly, each patch has its ownghost boundary space. Thus, after all patches at level l obtain their boundary values basedon these interrelationships, the patches can in principle be computed simultaneously, toobtain the new iteration's solution.However, because the size and arrangement of patches on each level is arbitrary, and eachpatch contains its own boundary space, the boundary space of the patches grows arbitrarilywith the spatial and scale complexity of the phenomena being examined. Thus, considerable41



(a) Patch Interfaces (thick lines) (b) Wasted Boundary Space (shaded)Figure 3.5: Boundary space in a quadtreetime must be spent passing information between patches. In addition, if boundary spaceis added to each patch, considerable memory is required to contain all of the boundaryspace. A great deal of the boundary space can become redundant, if the patches cover alarge, contiguous region (Figure 3.5). (The authors avoid the memory usage problem, sothe primary concern is communication time, which is of considerable signi�cance on manymassively parallel processor and cluster architectures, in which not only the amount of datacommunicated but also the number of times communication is initiated can signi�cantlyincrease the overall time to solution. In fact, one of the authors' test cases demonstrates theseverity of the communication problem, with sizable regions in which this property holds.)For many hardware architectures, this approach is not ideal; the main problem is thesize of the patches. Most architectures employ some equivalent of pipelining, in the sense42



that they can most quickly perform a series of operations on large, physically contiguousregions of memory. Thus, maximal optimization is obtained by performing an operationover the largest possible region of memory. For each level, each pipeline is applied to asubset of the patches, one at a time, and the solution method must be able to make the bestpossible advantage of the pipelining. However, many pipelines produce the best results whenapplied to memory regions of considerable length. For example, the Connection MachineCM-2 architecture is best applied to an integer multiple of the number of processors, whichmight well be in the thousands; the Cray C90 is best applied to vectors of length 64n,n � 1. Thus, even in integration schemes that can pipeline an entire multidimensionalgrid, the re�nement may need to be very large in order to obtain reasonable speedup fromoptimization, and in directional sweep schemes, the re�nement will have to be excessive.Further, these constraints will be almost entirely hardware dependent, requiring a completemodi�cation of re�nement ratios for each new machine. But perhaps most important, thesehardware-imposed re�nement ratios may have little to do with the scales of the physicalphenomena of interest.However, the value of this AMR strategy is clearer in massively parallel architectures,which may have relatively small local memories associated with many processors. Once allpatches have obtained their boundary values from their neighbors, each patch can be solvedindependently from all of the others, so this approach leads to a natural decomposition thatcan be quickly and easily distributed among a large number of procesors. However, in thesearchitectures, the number of patches should be np, n � 1, for p the number of processors, in43



order to maximally balance the load. Because patch size is �xed for each level, it is di�cultto regulate the number of patches at each level; rather, the number of cells to be re�nedat each level is arbitrary and changes during the simulation. Thus, an ideal balancing ofpatches within processors | speci�cally, an equal number in each processor | is di�cult.However, this problem is not overwhelming, since it will require at most one undersized (andthus wasteful) subset of patches distributed among a subset of the processors.3.5 Moving Local Uniform Mesh Re�nementGropp describes a class of mesh re�nement strategies called moving local uniform meshre�nement or MLUMR. In these strategies, a coarse uniform grid is overlayed with �neruniform grids. The �ner grids move, in the sense that the subdomain that they coverchanges as the solution evolves. In his original strategy, developed in the late 1970's andearly 1980's, Gropp used a single level of re�nement created along a shock front [Gro80].This re�nement produced results as accurate as those with a uniform �ne mesh but tookabout half the time and saved considerable memory, if a su�ciently high re�nement levelwas used.In Gropp's more recent strategy [Gro87], many levels of re�nement are possible, butindividual grids are important entities in and of themselves. In this approach, each grid hasa velocity with which it moves within its parent (Figure 3.6). Thus, regridding need onlyoccur when a grid crosses from one parent to another, or when two grids collide and therefore44



G1;1G1;0 G1;2G0;1G0;0
Figure 3.6: Grid nesting in Gropp's MLUMR strategyjoin. However, the relationship between a grid and its parent is constantly changing. Groppuses this re�nement strategy in order to take better advantage of pipelining capabilities, byproviding maximal data locality.3.6 SummaryAdaptive mesh re�nement techniques provide insight into the computational advantagesand disadvantages of structured meshes. Speci�cally, the simple, implicit connectivity ofstructured meshes is both boon and bane: it is inherently easier to optimize operationson such meshes, because they guarantee data locality, but it is also far more di�cult toadaptively re�ne them.Traditional multigrid methods are an instructive example for studying cycling schedules.While these methods are not adaptive, they illustrate the ways in which meshes of varyingresolutions can interact with one another, in order to solve unwieldy problems coopera-45



tively. Thus, these methods give rise to a more complete understanding of multiresolutionrequirements, a crucial issue for some classes of adaptive strategies.The various structured adaptive re�nement strategies that have previously been devel-oped depict many of the issues that any structured AMR strategy must address. The pitfallsinclude minimizing wasted space, ensuring su�ciently large subgrids to take advantage ofoptimization capabilities, the need for exibility in every aspect of the re�nement strategy,and the di�culty of adjusting existing simulation kernels to match the requirements of theadaptive approach. To the extent that an AMR strategy addresses these concerns, it mayconsidered e�ective and e�cient.

46



Chapter 4Overview of Berger's Adaptive MeshRe�nement StrategySince the early 1980's, Marsha Berger has been developing an adaptive mesh re�nementstrategy for structured meshes based on the notion of multiple, independently solvable grids,all of identical type but each of arbitrary size and shape. She began this work with JosephOliger at Stanford University [BO84] and has continued her research at the Courant In-stitute for Mathematical Sciences at New York University, and the Research Institute forAdvanced Computer Science at NASA Ames Research Center, with other collaborators,including Jameson [BJ85a], [BJ85b], Colella [BC89], Bokhari [BB87], Bell, Saltzman andWelcome [BBSW91], Aftosmis and Melton [AMB95], and Rigoutsos [BR90].47



4.1 PremiseThe underlying premise of Berger's strategy is that all grids of any given resolution that covera problem domain are equivalent in the sense that, given proper boundary information, theycan be solved independently by identical means. In essence, the multigrid concept is adjusted,reducing it from the highly accurate but computationally expensive set of increasingly �nelyresolved grids, each of which covers the entire domain, to a set of resolution levels, each ofwhich employs a disjoint set of subgrids to cover progressively less of the domain. Becausethe grid nesting is constantly changing, Gropp considers Berger's AMR scheme to be anMLUMR strategy [Gro87]; however, in Berger's AMR the grids do not move as such, butrather are replaced with other grids that may cover only slightly di�erent regions.4.2 Layout of the HierarchyBerger's AMR strategy features a hierarchy of resolution levels, each of which contains aset of grids (Figure 4.1). Berger's original implementation represents the hierarchy as adirected graph that is acyclic on relationships between levels (e.g., from parent to child andvice versa) but cyclic over all relationships (Figure 4.21). Every grid is completely coveredby some non-empty set of parent grids; both its active computational interior and its ghostboundaries are covered, except those portions of the ghost boundary that lie on the exteriorof the overall computational domain. In addition, the �ner grids abut the coarser cells, so1The �gure is the candidate's reproduction of a portion of Figure 5.1 on page 500 of [BO84].48



Harcrhyie G2;0 G3;0 G2;1 G1;1G0;0
OverallStructure

L0
L3 L2 L1

G3;1 Parent/ChildSiblings
G1;0

KEYFigure 4.1: A grid hierarchy49



G0;1G1;1 G1;3G1;2G2;1 G2;2Figure 4.2: Graph representation of grid hierarchythat the number of non-boundary cells along each axis of each �ner grid is an integer multipleof the re�nement factor.At the root level, each grid consists of a computational interior and a ghost boundaryregion. At all �ner levels, each grid consists of: a region of interest that has been re�ned fromthe immediately coarser level; a bu�er region, which allows the existing grids to continueto cover fully the phenomena of interest, even if they travel, until the next regridding; andthe ghost boundary region (Figure 4.3). In some cases, the bu�er region may be partiallyabsorbed if the grid abuts another grid at the same level (Figure 4.4). In fact, it is concep-tually more appropriate to consider the bu�er as surrounding the region of interest, whichmay be distributed among several grids, rather than as surrounding the subregion of interest50



Region of interest
Grid InteriorComplete Grid

Ghost BoundaryBu�er Bu�erGhost BoundaryFigure 4.3: Parts of a grid
Figure 4.4: Abutting grids with partially absorbed bu�er regions51



that a speci�c grid contains. In any case, each grid will retain its full boundary region, evenif it is overlapped by other grids at the same level.4.3 Interpretations of Adaptive Mesh Re�nementBerger's strategy for adaptive mesh re�nement can be interpreted in two di�erent ways: ei-ther as a series of increasingly �ne virtual grids overlaying the same domain, or as zooming inon a particular subdomain of interest. These interpretations give rise to di�ering approachesin various aspects of the adaptation, particularly in selecting regions for re�nement.4.3.1 Virtual GridsIn the virtual grid case (Figure 4.5), a root level, coarsest set of grids covers the entiredomain. Overlayed on the root grids is a virtual �ner grid, which also covers the entiredomain. However, this �ner grid is implemented by a set of non-overlapping subgrids thatcover only those subdomains of the domain requiring the higher resolution, according to there�nement criteria. This method of placing �ner subgrids over coarser grids can be repeatedrecursively, either to some prede�ned maximum resolution, or until the re�nement criteriano longer exceed the threshold at some level.The �ner subgrids on each level directly represent the �ner virtual grid of that resolutionon the subdomains they cover, while the coarser grids indirectly represent the �ner virtualgrid on the rest of the domain. Solution vector values of the �ner virtual grid that are52



ActualSubgrid
Root (Level 0)Grid

KEY
KEY VirtualGridLevel 1ActualSubgridVirtualLevel 1GridFigure 4.5: Virtual grid interpretation53



contained in actual �ner subgrids are obtained directly; the rest are obtained by injectingfrom coarser grids as necessary.Ultimately, the purpose of this approach is to represent every portion of the domain withthe minimal resolution required to satisfy some criteria. Therefore, this interpretation ofBerger's strategy is most amenable to selection criteria which are automatic. For example,the collection of grids may cover the domain such that, for all points in the domain P = (x; y),the truncation error �P < ", where " is the re�nement threshold.An example of an application for which this interpretation is appropriate is the movementof a shock front through a uid [BC89]. In this case, the grid loci that contain the shockmust be computed at high resolution, in order to ensure low error for all solution values(Figure 4.6).4.3.2 Zooming GridsThe zooming interpretation approaches adaptive mesh re�nement quite di�erently. Here,the increasingly �ne subgrids cover an increasingly small subdomain, or a small collectionof disjoint subdomains, within the overall domain, and these subdomains are explored inmore detail than the rest of the overall domain. (Figure 4.7). This approach to AMR isdi�cult to perform automatically, because it often applies to domains that contain manyredundant phenomena, all of which would be selected by automatic re�nement criteria. It ismost naturally achieved by interactive selection of re�nement regions.54



Figure 4.6: AMR on a moving front55



Figure 4.7: AMR zoom56



4.4 Berger's AMR AlgorithmBerger's AMR scheme employs the nested hierarchy of grids to cover the appropriate sub-domain at each level. The integration algorithm recurses through the levels, advancing eachlevel by the appropriate time interval, then recursively advancing the next �ner level byenough iterations at its (smaller) time interval to reach the same physical time as that ofthe newest solution of the current level:Integrate (level)beginEvolve(level)if "level isn't finest" then beginfor r = 0 to time_refinement_factor - 1 doIntegrate(level + 1)endendThus, the order of the integrations is a generalized W-cycle (Figure 3.2), with integrationsat each level recursively interleaved between iterations at coarser levels (Figure 4.8). Animportant e�ect of the integration order is that, as a general rule, the overwhelming majorityof computing time is spent on the �nest level, as a direct result of the fact that Berger's AMRre�nes in time as well as in space: if the re�nement factor between a �ner level l + 1 andthe next coarser level l is r, then grids on the �ner level l + 1 will be advanced r timestepsfor every coarser timestep. For a d-dimensional domain, the grids at level l + 1 must coverthe same portion of the computational domain as only 1=rd coarser cells at level l, in orderto consist of the same total number of cells for the level, because every coarse cell covers rd57



2nd 9th3rd 6th 10th 13th4th 5th 7th 8th 11th 12th 14th 15th
RootLevelLevel 1Level 2Level 3 t

1st
simulated physical timeFigure 4.8: Integration order in Berger's AMR scheme�ne cells. Taking into account the r �ner timesteps per coarser timestep, it is clear that thetimesteps on the �ner level will take more computation time than one coarser level timestepunless the �ner level includes no more than 1=rd+1 as much of the computational domainas the coarser level. For example, using a re�nement factor of two on a three-dimensionaldomain, two iterations at level 1 will take more computation than an iteration at the rootlevel (which comprises the entire computational domain) unless the grids at level 1 cover nomore than 1=16 of the domain.Integration requires �ve operations:� boundary value collection, from parents, siblings, and the exterior of thecomputational domain, as appropriate;58



� evolution, to advance the solution in time;� ux-based correction, to ensure conservation at the interfaces between those coarsecells that are overlapped by �ne cells and those that are not;� projection, to improve the solution values on coarse cells from the overlapping �necell values;� re�nement, to place grids appropriately for the evolved condition of the solution.Thus, a more precise expression of the integration algorithm is:Integrate (level)beginif "time to refine" then Refine(level)CollectBoundaryValues(level)Evolve(level)if "level isn't finest existing" then beginfor r = 0 to time_refinement_factor - 1 doIntegrate(level + 1)endIncrementTime(level)if "level isn't finest existing" then beginCorrectFluxes(level, level + 1)Project(level, level + 1)endend4.4.1 Collection of Ghost Boundary ValuesValues for the ghost boundary cells surrounding each grid's active region are collected fromthree sources (Figure 4.9), as appropriate: by injecting from parents on the immediately59



Parents

Exterior
Siblings

Figure 4.9: Sources of boundary values60



yi+1yi y xxi xi+1Figure 4.10: 2D Area-weighted linear interpolationcoarser level, by copying from siblings at the same level, and by extrapolating from theexterior of the computational domain.Injection transfers boundary values to a �ner grid based on the values of its coarser parent,typically by an interpolation. For example, a common type of injection is linear volume-weighted interpolation, in which the values of the surrounding parental loci are weightedby the diagonally opposite relative volume (shown in 2D in Figure 4.10). There are also avariety of more sophisticated interpolation schemes, including higher order and conservativeschemes.A fundamental principle of boundary collection is that a grid at a non-root level requiresmaximal coverage: the entire active region of the grid, and as much of its boundary regionas possible, must be covered by some set of parent grids at the immediately coarser level,except for those boundary regions exterior to the computational domain (Figure 4.11).61



Figure 4.11: Grid coverage

Figure 4.12: Grid with incomplete coverage62



Coverage is required because it promotes the principle of the maximally accurate state: forevery call to the solver, the grid's (non-exterior) boundary is at least as accurate as theimmediately coarser level. Coverage is fundamental because, unless it is guaranteed, it ispossible for a grid to obtain its input values from much less well resolved levels (Figure 4.12).For a d-dimensional application of maximumdepth lmax and a re�nement factor of r betweeneach, each covered grid has (non-exterior) boundary values of no worse than 1=rd+1 as wellre�ned as its interior (computed) values, since the re�nement is over d spatial dimensionsand one time dimension. This property holds at any level, from coarsest to �nest, thoughat the coarsest level the (non-exterior) boundary resolution is identical to the computedresolution. An uncovered grid, on the other hand, may have (non-exterior) boundary valuesonly (1=rd+1)lmax as well resolved as its computed values, because it may need to draw someof its boundary values from as far away as the root level.When a grid's boundary region is overlapped by another grid's computed interior, theformer grid can obtain boundary values from the latter sibling grid by simple copying. Nat-urally, this case is ideal, because it provides the best resolution possible for that ghostboundary cell. However, many of the grids at a particular level will obtain some or all oftheir boundary values from other than sibling interiors. The only way to guarantee that all(non-exterior) boundary values are obtained from siblings is to re�ne the entire domain |which would defeat the purpose of AMR. In this context, a grid's siblings are only thosegrids at the same level that overlap the grid's ghost boundary region (Figure 4.13).Super�cially, it might appear that an appropriate source of boundary values would be63



G1;0 G1;1 G0;0
G1;2G0;1G0;0 is the parent of G1;0's interior and is a parent of G1;1's boundary.G0;1 is the parent of G1;1's interior and is a parent of G1;0's boundary.G1;0 and G1;1 are siblings.G1;2 has no siblings, despite the fact that it shares a parent with G1;1.Figure 4.13: Parents and siblingsgrids at �ner levels. The �ner grids, after all, are even more well resolved than are theirparents. However, closer inspection of the AMR algorithm and integration order revealsthat drawing boundary values from children is not necessary, and would involve redundantcalculation. The reason is that each timestep at a level l is followed recursively by r timestepsat level l + 1 for some re�nement factor r. At the end of these r �ner timesteps, the �nergrids have caught up in physical time to the coarser level | that is, tl+1 � tl | and thenthe �ner values from level l + 1 are projected onto the coarser level l. Also, each �ner gridis completely covered by some subset of the coarser grids. Therefore, before the boundaryvalues are collected at level l, any boundary values that might have come from grids at levell+ 1 have already been projected onto their parents | which are the siblings of the grid of64



interest | at the end of the previous level l + 1 integration.The �nal source for boundary values is the exterior of the overall computational domain,which requires extrapolation: constructing data that have not otherwise been computed. Inmany cases, however, exterior boundary values are obtained not by extrapolation as such,but by appropriate copying, in cases such as periodic and reecting boundaries, or by ananalytic procedure, as is sometimes the case with inow boundaries. For simplicity, however,it is convenient to consider such conditions as degenerate cases of extrapolation, and thus torefer to the process of obtaining any exterior boundary values as extrapolation.4.4.2 Evolving the SolutionThe solver or kernel of a simulation evolves the solution by advancing it forward by a speci-�ced time interval. Although the solver is the lynchpin of any numerical simulation, itsdetails are not directly relevant to AMR, because the AMR abstracts it into a \black box"operation; that is, given the correct input, the solver is expected to produce the correctoutput, and otherwise is not a concern of the AMR strategy.4.4.3 Flux Correction for ConservationBerger's AMR strategy permits conservative numerical schemes [BC89], with conservationachieved by a relatively simple adjustment to the numerical solver, and a simple, e�cientux correction step.Speci�cally, the solver receives as input not only the variables it needs, such as solution65



i i+ 1i+ 12j kk + 12 m+ r � 1mFigure 4.14: Flux correction at �ne-to-coarse interfacesvectors, grid descriptions (for example, the number of nodes along each axis), and integrationarguments (for example, the time step interval), but also special arrays for storing the uxesalong the interface of each grid. These uxes are collected after computing each timestep,in separate arrays for each grid. The uxes for the �ne level are summed over all the �netime steps that constitute a coarse time step, in a separate array, and the di�erence betweenthe �ne uxes and the coarse uxes is used to correct the coarse solution values along the�ne-to-coarse interfaces.The ux correction operation (Figure 4.14) is as follows:� Let r be the re�nement ratio.� Let uli;j be the solution at the center of cell i; j at coarse level l.� Let f l+1k+ 12 ;m be the ux at the interface between cells k;m and k + 1;m at �ne level66



l + 1.� Let f li+ 12 ;j be the ux at the interface between coarse cells ij and i+ 1; j.� Let F l+1k+ 12 ;m be the total ux at the interface between �ne cells k;m and k + 1;m overan entire coarse step | that is, over r �ne timesteps.� Let nly be the number of coarse cells along the y-axis.Initially, after integrating at the coarse level and storing the f li+ 12 ;j's, j = 1 : : : nly, letF l+1k+ 12 ;m  0; l = 1 : : : nl+1yAfter each �ne time step,F l+1k+ 12 ;m  F l+1k+ 12 ;m + f l+1k+ 12 ;m; l = 1 : : : nl+1yWhen r �ne time steps have been performed, bringing the time of the �ne level to that ofthe coarse level, ui+1;j  ui;j + (r�1Xp=0 f l+1k+ 12 ;m+p � f li+ 12 ;j; j = 1 : : : nlyThe expressions are analogous for interfaces along other axes. (Actually, Berger gives asimilar, more elaborate expression based on unitless ux values rather than actual uxthrough the speci�c cell.)A more intuitive explanation of this ux correction procedure is that the algorithm records67



the amount of material | for example, mass | that passes through an interface between a�ne grid and a coarse grid. When the coarse timestep is performed, the algorithm records thecoarse ux, which is the amount of material traveling through the interface during the timeinterval of the coarse timestep. When each associated �ne timestep is performed, the uxesthrough the �ne cells composing that interface are recorded, and a running total of these�ne uxes is maintained over the r �ne timesteps that correspond to the coarse timestep(Figure 4.15). In addition to summing along the timesteps | and thus along the time axis| the �ne uxes are ultimately summed over all of the �ne cell interfaces that contribute tothe coarse cell interface. Thus, a total of rd �ne uxes are summed over the r �ne timesteps,because there are rd�1 �ne cell interfaces for each coarse cell interface.If the coarse cell and the corresponding �ne cells arrive at exactly the same result, thenthe di�erence between the coarse ux and the sum of the rd �ne uxes is zero, in which casethe correction does not change the value of the abutting coarse cell. In practice, of course,the likelihood of the coarse and �ne values being identical is extremely low, and in factwould be considered problematic, in the sense of indicating an unnecessary re�nement. Thepurpose of ux correction is to adjust such a cell, on the assumption that the values on thecoarse and �ne cells will not be identical. Thus, when the �ne solution values are projectedonto the corresponding coarse cell, the amount of material traveling between that coarse celland the coarse cell that abuts it is the same as would result if the abutting coarse cell alsohad corresponding �ne cells. In this way, conservation is maintained on the �ne-to-coarseinterfaces. 68



t! t+�t

t+ 3�t=4 ! t+�tt+ 2�t=4 ! t+ 3�t=4t+�t=4 ! t+ 2�t=4t ! t+�t=4
t+ 3�t=4 ! t+�tt+ 3�t=4 ! t+�tt+ 3�t=4 ! t+�tt+ 2�t=4 ! t+ 3�t=4t+ 2�t=4 ! t+ 3�t=4t+ 2�t=4 ! t+ 3�t=4t+�t=4 ! t+ 2�t=4t+�t=4 ! t+ 2�t=4t+�t=4 ! t+ 2�t=4t ! t+�t=4t ! t+�t=4t ! t+�t=4

Figure 4.15: Fluxes for correction69



4.4.4 Projection from Fine to Coarse GridsProjection is the process of updating a coarser level, using the more accurate values of thecells at the �ner level to replace the covering cells on the immediately coarser level. Projectioncan be achieved by any of a number of means, including� copying, for example velocities at nodes;� summing, for example masses at cell centers;� averaging, for example densities at cell centers.An important point here is that projection should occur after ux correction, ratherthan before, because the projected values reect the most accurate solution available. Ifprojection occurs before correction, then the optimal projected values may be corrected,which is obviously undesirable. If, however, correction occurs �rst, then any corrected valuescovering a �ner grid will be replaced with the projected values, while those on true �ne-to-coarse interfaces will remain appropriately corrected.4.4.5 Re�nementRe�nement covers subdomains with grids of higher resolution. Re�nement is probably themost algorithmically complex operation in Berger's AMR strategy. Like integration, it isimplemented recursively: a re�nement at level l �rst re�nes level l+1, and so on recursivelyto the �nest level. In this way, proper nesting, or coverage, of the re�ned regions at �ner70



levels is ensured. The basic re�nement algorithm is:Refine(level)beginif "level is finest allowed" then returnif "level isn't finest existing" then Refine(level+1)Select(level)Expand(level)Cluster(level)Regrid(level+1)if "timestep is initial" and"level isn't finest allowed" and "finer level is empty" thenRefine(level)endEven this simpli�ed description of the re�nement procedure is counterintuitive on itsface, but a statement-by-statement examination may prove helpful.if "level is finest allowed" then returnThis statement is the halting criterion of the recursion; no re�nement of the �nest levelallowed is possible.if "level isn't finest existing" then Refine(level+1)In this statement, the re�nement algorithm recursively calls itself on the �ner level (Figure4.16). Inductively, it may be helpful to assume that this statement works properly andproduces a properly nested hierarchy for all levels �ner than l. Thus, while the existing gridsat level l + 1 have not been replaced, all the grids at l + 2 through lmax (if they exist) havebeen, and all of those levels now cover all regions of interest that are contained within thegrids at l + 1. 71



After re�ning level l + 1
Before re�ning level l+ 1

Figure 4.16: Recursive re�nement of �ner levels72



Figure 4.17: Selection of re�nement regionsNext, regions of interest on level l are selected:Select(level)Selection is described in more detail in in section 4.4.6, but for the moment it is su�cient tonote that the selection algorithm produces the appropriate regions of interest to be re�ned(Figure 4.17).The selected regions must next be expanded:Expand(level)Expansion serves to ensure coverage of the grids at �ner levels. Each selected cell is expandedby the number of cells necessary to cover the next �ner level's bu�er regions and the even�ner level's boundary regions. In addition, the re�ned regions from grids at even �ner levelsmust be covered as well, so their subdomains are mapped onto the selection regions.73



Figure 4.18: ClusteringThen, the expanded re�nement regions at level l are clustered:Cluster(level)Clustering maps the set of re�ned loci into a set of rectangular regions, each of whichrepresents the subdomain that a new grid will cover (Figure 4.18).Next, l + 1 is regridded:Regrid(level+1)That is, the grids at l + 1 are replaced by grids that cover both the selected regions ofre�nement at level l and the newly created grids at l+ 2 through lmax (Figure 4.19).The �nal statement of the re�nement algorithm74



Figure 4.19: Regridding the immediately �ner levelif "timestep is initial" and"level isn't finest allowed" and "finer level is empty" thenRefine(level)is used only to initialize the hierarchy. If the hierarchy is being initialized, then it is usefuland appropriate to create grids of as �ne resolution as required. Furthermore, when there�nement algorithm is executed at each level, there are as yet no grids at any �ner levels.Therefore, the algorithm recursively creates the next level, which does not need to re�nesubsequent levels, since they don't yet exist. But when that level has �nished being re�ned,it will in turn create further levels as necessary.Thus, either the former or the latter recursive re�nement may occur, but not both, sincethe former occurs only if there are �ner grids to cover, and the latter occurs only duringinitialization, when there are no �ner grids to cover, and when the values on the �ner grids75



are obtained from the initial conditions, rather than injected from (possibly far-removed)coarser levels. It might be possible to dispense with the condition governing the latterrecursion, but that might inject very coarse values to very �ne grids, and also could resultin O(2lmax+1) re�nements.4.4.6 Selection of Cells to be Re�nedSelection of cells to be re�ned is problem-speci�c: depending on the nature of the applicationto which AMR techniques are applied, a variety of selection criteria can be applied.The simplest selection criterion is comparing a solution value to a threshold; those cellswhose value exceeds the threshold are re�ned. This criterion has the advantage of beingsimple and quick, but it is not particularly rigorous, and it rarely represents a physicalphenomenon of interest.Another fairly simple selection criterion is comparing the gradient of a solution value |that is, its local rate of change | to a threshold. While this criterion is not as simple as adirect comparison of values, it is still quite simple and quick.Berger recommends a more rigorous selection criterion, Richardson truncation error es-timation:� Let u(x; t) be the solution vector at position x and time t.� Let Qh be the integration operator with mesh spacing h.� Let q be the order of accuracy of the integration method Q.76



Thus, u(x; t+�t) = Qh u(x; t)Then the truncation error � is estimated byQ2hu(x; t)�Q2hu(x; t)2q+1 � 2 = � +O(hq+2)In other words, the truncation error estimate is obtained by advancing the solution onetimestep of interval 2�t on a grid of mesh spacing 2h, advancing the solution two timestepsof interval �t on a grid of mesh spacing h (Figure 4.20), and comparing the results. Themethod is not only an accurate error estimator, but also an intuitively appealing re�nementcriterion. In a sense, it asks the question: how di�erent would the results be if the solutionwere evolved with the current resolution, as compared to using a di�erent resolution? If theanswer for some cell is signi�cantly di�erent, then the cell is re�ned.In principle, this error estimator is ideal for AMR, since it uses the same solver as is usedfor evolving the solution. In practice, however, it can be somewhat unwieldy.The di�culty is in the calculation of Q2hu. Computing this solution is trivial: it is simplyanother call to the solver. In practice, however, setting the grid with mesh spacing 2h canbe considerably more complicated.In principle, a simple approach is a striding copy, copying every other locus to a gridof half the size, the computing a solution. If the striding copy is performed twice for eachdimension, for a total of 2d calls on grids of 1=2d cells, and the partial results copied back77



Parent0-1 2 3 4 543210-1 -1 0 1 2 3 4 5-1 0 1 2 3 41
-2 0 2 4 6-2 0 2 4-1 1 3 5-1 1 3-1 0 1 2 3 4 5-1 0 1 2 3 4Q(u; 2dx; 2dt) combined

Q(u; 2dx; 2dt) rightQ(u; 2dx; 2dt) leftQ(Q(u; dx; dt))

Figure 4.20: Computing the Richardson truncation error estimate
78



Parent
-4-4

0 10 1 2 2 3 4 4 5-3 -2 -2 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7Q(Q(u; dx; dt))-3 6
-2 -2 0 0 2 2 4 4 6 8-1 Q(u; 2dx; 2dt) left? ?� � � � � �

10-6 6
3 5

-6 8Figure 4.21: Richardson truncation error estimation boundariesinto appropriate holding �elds, then the Q2hu solution is obtained. While perhaps somewhatcumbersome to code, this set of striding copies is not particularly complicated.However, the boundary zones must also be obtained at mesh spacings of 2h (Figure4.21), and this constraint can be problematic. In order to obtain boundary values, eitherthe computational interior of the grids must be expanded, or the boundary values must beobtained from the boundaries of the parent grids. The former approach is more expensive,the latter is less accurate.Not coincidentally, some AMR implementations | including Berger's original AMR code| make signi�cant adjustments to the body of the solver to simplify computation of Q2hu.To some extent, however, such alterations defeat one of the primary advantages of Berger'sAMR strategy: that it can be quickly and easily applied to new applications, by incorporating79



their solvers and other relevant routines with a minimum of recoding.4.4.7 Clustering AlgorithmThe clustering algorithm of Berger and Rigoutsos [BR90] (Figure 4.22) is based on a methodused in computer vision and pattern recognition. The algorithm is as follows: �rst, a minimalbounding box is placed around the cells that have been agged to be re�ned. Next, asignature list is computed along each grid axis. A signature �i is the number of aggedentries along the ith grid surface; e.g., a grid line in 2D, a grid plane in 3D, and so on:�i =Xj Xk fijk; where fijk = 8>>><>>>: 1 if cell ijk is agged0 otherwiseThen, any zero entry in the signature list of any axis is a grid surface perpendicular to thataxis that contains no agged cells, and thus this zero entry is a potential cutting index. Thebest of these zero entries | the most central along some axis | is used as the cutting indexto subdivide the domain.In many cases, the signatures are all nonzero, yet these signatures are often obtainedfrom arrangements of agged cells that clearly can be further decomposed. In this case, theLaplacian second derivative of the signatures�i = �i+1 � 2�i + �i�180



3 3 5 5 5 2 230 -3-22 4 2 3 655555000jZi+ 12 j�i �i
33550224 -2 5 55533 -2 0242�i�ijZi+ 12 j3305555

5 3 3 5 5 5 4 4 2�i
(a) (b)

(c)(d)Figure 4.22: Example of clustering by signatures (clockwise from upper left)81



is used. A zero crossing is an index where � changes sign, and any zero crossing is a potentialcutting index. The best zero crossing is the one whose magnitudeZi+ 12 = j�i+1 ��ijis largest, and this index is chosen as the cutting index.The clustering algorithm recurses on each subregion; thus, the algorithm traverses a k-dtree [Ben75] with specially de�ned cutting criteria. Recursion continues until some haltingcriteria are satis�ed. Typical halting criteria for a cluster are:� the cluster is at least some minimum e�ciency threshold c, in the sense that the ratioof the number of its cells that are agged for re�nement to the total number of cellsin the cluster is at least c;� further partitioning of the cluster would produce subclusters too small to be optimized.In some cases, recursion continues even if the regions already produced meet the haltingcriteria; for example, the algorithm may wish to produce clusters of no greater than aspeci�ed size, so any cluster larger than that is bisected along the longest axis, in much thesame manner as the cutting criterion for a standard k-d tree.An important point here is that the clustering algorithm operates entirely in computa-tional space. Thus, it is not only more e�cient, since it operates in O(n log n) time on thenumber of cells, it is also easily adaptable to curvilinear grids.82



4.4.8 RegriddingRegridding creates new grids at a �ner level to cover the selected area of re�nement at theimmediately coarser level. In principle, the operation is very simple:Regrid(level)beginif (newclusters > 0) then beginCreateNewGrids(level)if (level > 0) thenInjectInteriorsFromParents(level, level-1)if (oldclusters > 0) thenCopyInteriorOverlaps(level)endif (oldclusters > 0) then DeleteOldGrids(level)endThus, the values on the new grids' computational interiors are at worst one level of resolutionless well resolved than the old grids that they replace, and typically most of the values areactually copied directly from the old grids, so very little information is lost. In fact, if the sizeof the bu�er regions is carefully chosen, the new grids will be su�ciently resolved everywhere(Figure 4.23). This condition arises because the cells of the old grids that do not overlap thenew grids are, by de�nition, the regions where the solution no longer needs to be so �nelyresolved. In contrast, the cells of the new grids that are not overlapped by the old grids, andthat are therefore outside the old grids' bu�er regions, are | for carefully chosen bu�er sizes| outside the region of interest of the new grids, since the purpose of the bu�er regions isto anticipate the movement of the phenomenon of interest and to continue to cover it untilthe next regridding. 83



Bu�erBu�erOld Old
Bu�erNew NewBu�erValues copied from old grid friom parentValues injectedEvolved Region of Interest

Original Region of Interest
New GridWasn'tinteresting Was interesting,but no longer Continues to beinteresting interestingHas become Not yetinterestingOld Grid

Figure 4.23: Copying from old to new during regridding4.5 Evolution of Berger's AMR StrategyBerger's AMR strategy has changed in several signi�cant ways over the last decade. Someaspects of the system have been improved, some altered and some completely eliminated.When Berger �rst implemented her strategy [Ber83], it had several properties that nolonger hold:� all grids were isotropic;� grids at the same level could overlap;� grids could be rotated with respect to the coordinate axes;� the clustering algorithm was ine�cient;84



� variables were located at the nodes.4.5.1 Allowed Mesh TypesThe �rst concern, that grids could be only isotropic, was easy to dispense with, by addingprogram mechanisms which had the capability of recognizing and addressing rectilinear andcurvilinear grids [BJ85b].4.5.2 Overlapping GridsIn Berger's original strategy, grids at the same level of resolution were allowed to overlapone another, creating a situation that can give rise to two signi�cant problems: waste andux overcorrection.First, overlapping grids are wasteful. This issue is not merely a matter of a few extracells at the level of the overlap. Rather, overlapping has a subtler and more signi�cant im-pact: at �ner levels, entire complicated structures can be duplicated [Bry96a] (Figure 4.24),consuming not only considerable additional memory, but also a great deal of computationtime, because the majority of computation is on the �ner levels.Second, overlapping grids complicate ux correction. During the correction step, eachgrid contributes its ux values to the ux correction of its parent(s). When two grids overlap,the ux correction is performed twice around the region of overlap (Figure 4.25), unless greatcare is taken to ensure that this overcorrection does not occur.85



Gl;3Gl+1;2,Gl+1;3Gl+1;0,Gl+1;1
Gl;0Gl�1;0 Gl;1,Gl;2

Gl�1;1Figure 4.24: Duplicated �ne structure in an overlap region
Gl;3Gl;0Gl�1;0 Gl;1,Gl;2

Gl�1;1Figure 4.25: Inappropriate ux correction in an overlap region86



4.5.3 Rotated GridsRotated grids, long a staple of Berger's strategy, were ultimately dispensed with. Bergernotes that, although they covered the re�nement regions more e�ciently, in the sense thatfewer nodes were unnecessarily re�ned, their e�ciency contribution was small, only about15% [Ber91]. In addition, ux correction for conservation at interfaces between coarse and�ne grids, which is simple with �ne grids that line up along coarse gridlines, is consider-ably complicated by rotated grids [Ber85]. Also of signi�cance is the added computationaloverhead required: when grids line up, interpolation between coarser and �ner grids is quitesimple, and degenerates to simple copies between grids of the same resolution. With ro-tated grids, however, all interpolations involve point location, which on rectilinear grids isO(log n 13 ) on the number of cells and on curvilinear grids is O(log2n) [PT92] (although someheuristics typically produce better results in many cases [Wil92], [Nee90]). Furthermore,every interpolation between any pair of grids must be based on positions in physical space,because distances between positions can be expressed only as oating point values (Figure4.26). Thus, the computational overhead can be excessive, as can be the coding overhead.Another problem that arises with rotated grids is that grids at the same level can overlap.In addition to the problems associated with non-rotated overlapping, each rotated overlapregion has multiple, slightly di�erent solution values for the same physical position, whichrenders the concept of a \solution" ill de�ned.Perhaps most important, though, is that in order to use rotated grids, the solver must87



Figure 4.26: Interpolating between rotated gridshave mechanisms to determine the rotation and apply it to the numerical physics. Thisrequirement can be unnecessarily burdensome to the application scientist.4.5.4 ClusteringBerger originally used a modi�ed minimal cost spanning tree algorithm for clustering, withthe distance between nodes being the cost. The algorithm was as follows: �rst, the nodesthat required re�nement were split into clusters, based on proximity. Then grids were �ttedaround the clusters. Finally, the grids were tested to determine whether merging any pairof grids produced a reasonably e�cient single grid, thus reducing the boundary space ofthe grids. This approach to clustering was not only highly heuristic, it was very time{consuming, because constructing a minimal cost spanning tree is O(n2) on the number of88



nodes requiring re�nement, and merging is O(g2) on the number of grids. Over time, Bergerpursued a number of di�erent clustering strategies, but the one she ultimately settled on,based on signatures, has several advantages: it is fast, performing in O(n log n) time on thenumber of cells; it produces a good clustering in most cases and an acceptable clusteringin all cases; it operates in computational rather than physical space; and it produces nooverlaps.4.5.5 Location of VariablesBerger's original system permitted variables to be located at the nodes only. However,with the introduction of ux correction to ensure conservation, and with the use of thenew, signature{based clustering algorithm, it became necessary to locate the variables atcell centers. This decision proved useful in a number of ways, particularly because manyof the phenomena to which Berger's AMR strategy was applied had cell{centered solvers.However, choosing cell centers over nodes, while perhaps more popular, is nonetheless stillquite restrictive, because many multivariate applications require staggered grids.4.6 Related Research Using Berger's AMRThere are several examples in the literature of experiments conducted using Berger's AMRstrategy. These examples cover a wide variety of application areas, including computationaluid dynamics, meteorological simulations, materials science and general relativity.89



Berger, with various collaborators, has produced more than a dozen publications onvarious aspects of her AMR strategy. Among the issues she has studied have been theAMR strategy itself [BO84], [BC89]; AMR data structures [Ber83], [Ber86]; conservationissues [Ber87]; the signature clustering algorithm [BR91]; implementation, distribution andload balancing issues on MPPs [BB87] and on SIMD architectures [BS94]; modeling embed-ded surfaces in adaptive hierarchies [AMB95]. She has also collaborated on studies of theapplication of her AMR stragegy to speci�c research topics, for example two-dimensionalEuler equations for transonic ows [BJ85a], [BJ85b], and interaction of shocks and bub-bles [BBSW94]. Generally, Berger's work has addressed applications in computational uiddynamics.Skamarock has used Berger's AMR strategy to study numerical weather simulation andprediction, beginning with his work in 1987 with Oliger and Street [SOS89]. Skamarock'simplementation is based on Berger's original strategy [BO84], and thus he uses rotated,overlapping grids. Among the topics his research has examined are severe convective storms[SKW91], nonhydrostatic atmospheric ow in two and three dimensions [SK93], and long-lived squall lines [SWK94]. In addition, he has examined a variety of truncation errorestimates in order to optimize the selection of regions to be re�ned in the class of problemsthat he studies [Ska89].Some of Berger's collaborators, including Colella, Welcome and Bell, have published AMRstudies separately from Berger as well, often collaborating with one another. For example,the three of them, with Pember and Crutch�eld, have studied methods of embedding irreg-90



ular regions within adaptive hierarchies [PBC+95]. Pember, Crutch�eld, Bell and Colellajoined Greenough and Beckner in studying interface-capturing in multiuid ows [GBP+95]using Berger's AMR. And Crutch�eld, Bell and Colella joined Steinthorsson and Modianoin studying unsteady viscous compressible ows [SMC+95].Another group of researchers using Berger's AMR strategy belong to the Binary BlackHole (BBH) Grand Challenge consortium. For example, Mass�o, Seidel and Walker describea numerical relativity AMR implementation for evolving Schwarzschild spacetime in one di-mension [MSW95]. In addition, Choptiuk has developed a Fortran 77 AMR implementationfor studying numerical relativity in multiple dimensions [Cho94]. Also, Haupt describes aFortran 90 implementation of the AMR strategy [Hau95] that may prove useful for developingnew AMR implementations.Another member of the BBH consortium, Parashar, has developed perhaps the mostpromising approach to distributing AMR grid hierarchies. Parashar's AMR implementation,called the Distributed Adaptive Grid Hierarchy (DAGH) system, achieves load balancing andminimizes communication by distributing the grid according to a self-similar space �llingcurve [PB]. In addition, Parashar's C++ implementation provides some object-orientedabstraction of many mesh and AMR concepts. Thus, implementing AMR versions of existingapplications involves only a moderate amount of C++ coding.A few other researchers are using Berger's AMR strategy. For example, Meakin discussesthe relationship of Berger's strategy to overset grids, in which grids of di�erent geometriesoverlap one another [Mea95]. Finally, Kohn and Baden have implemented AMR support91



using LPARX, a runtime parallel support system implemented as a C++ class library [KB95].4.7 Popularity of Berger's AMR StrategyBerger's AMR strategy shows incredible potential as a means of expanding the tractabilityof a wide variety of numerical experiments. For example, one of Berger's recent three-dimensional experiments exhibited an improvement over conventional techniques by a factorof 55 [BBSW94]. And yet, relatively few researchers are using this strategy, despite thefact that it has been available for over a decade. By contrast, dozens if not hundreds ofresearchers use AMR techniques on unstructured grids.Most of those who use Berger's strategy are concentrated in a few small interlockingresearch groups. For example, Berger's work at RIACS led to collaborations with Pember,Bell, Crutch�eld and Welcome of Lawrence Livermore National Laboratory and Saltzmanof Los Alamos National Laboratory, and most of these researchers have also collaboratedwith Colella of the University of California, Berkeley. Skamarock, now at the NationalCenter for Atmospheric Research, had Oliger as his dissertation advisor, as did Berger.Similarly, the Binary Black Hole Grand Challenge group has several researchers who haveexperimented with Berger's AMR, including Parashar, Haupt, Choptiuk and Chrisochoides,who has written a parallel AMR support library. Outside of these two groups are a few otherresearchers using Berger's AMR, including Kohn and Quinlan, but most of the scientists whouse this strategy are connected either to the Berger-Oliger-Colella group or to the Binary92



Black Hole group.The primary reason for the lack of popularity of Berger's strategy is that it is extremelycumbersome to code and to maintain. Of the few researchers who have developed softwarefor Berger's AMR, many have made a variety of application-speci�c simplifying assumptionsin order to streamline the coding. For example, many AMR codes allow only one or twostaggerings, typically either cell-centered, node-based or both. Also, some codes implementRichardson truncation error estimation by making signi�cant adjustments to the solver | asin fact did Berger's original code | which is unrealistic for many legacy codes, and for othercomplicated codes. For example, Brandt describes a relativity solver he uses that has a loopbody of approximately 500 lines, which he notes would be cumbersome to recode, althoughrecoding the formal argument list and the loop bounds would be acceptable [Bra96].Berger's AMR is di�cult to code for two primary reasons. First, this strategy presentsa very complicated data management problem, not only because of the dynamic nature ofmemory usage but also because of the relationships and interactions between the variousparts. Second, the AMR algorithm itself is not only elaborate, but also very sensitive toeven the smallest incongruities. At every step in the development process, new problemsare discovered that must be addressed in a manner consistent with the rest of the AMRimplementation. The temptation to treat Berger's AMR as a relatively minor modi�cationof existing techniques | for example, traditional multigrid strategies | must be avoided,because Berger's strategy is signi�cantly more complicated in both its data management andits algorithm. 93



To make Berger's AMR accessible to the community of researchers using structured �-nite di�erence schemes, a new approach must be developed. Requiring application scientiststo code their own AMR schemes directly is unrealistic; rather, the computational sciencecommunity requires an AMR system that manages its own data, includes all the appro-priate algorithms and presents them in an intuitively clear manner, and imposes minimalreinstrumentation requirements on existing codes.

94



Chapter 5Autonomous Data Management forGrid HierarchiesBerger's adaptive mesh re�nement strategy presents a signi�cant data management chal-lenge. AMR software architectures are unlike traditional numerical approaches, which needto manage only the solution vectors and perhaps some additional work space, typically for asmall, �xed number of static grids whose relationships are known at compile time. Instead,AMR systems must manage not only the solution vectors for a large, dynamically changingcollection of grids, but also the relationships between the grids, the relationships betweenthe solution vectors and various other data items, and the relationships of the various dataitems to the methods that operate on them. In addition, maximal exibility is achievedif the manner of describing the data items and relationships allows the data structure tobe autonomous: that is, to manage itself, rather than relying on hard-coded management95



functions.This aspect of Berger's AMR strategy has been one of the primary stumbling blocks to theincrease of its popularity among computational scientists. The burdensome coding require-ments of grid hierarchy data structures make development of general-purpose AMR systemsin scienti�c languages like Fortran unrealistic. Even if a system is designed in a languagethat supports sophisticated data constructs, such as C, the enormous variety of structuredsimulation paradigms leads to a prohibitively high amount of design and implementationlabor.However, if an AMR system's data management infrastructure has at its foundation asolid body of theory, then design and implementation become not only less cumbersome butalso more intuitive. Thus, a fundamental aspect of the research for this dissertation is sucha collection of principles, which describe the nature and properties of the data structuresand their management. Over the course of the development of the software architecturethat demonstrates the research contribution of this dissertation, the underlying theoreticalbasis has inuenced, and been inuenced by, practical design requirements. Therefore, adescription of the data management principles which give rise to generality and autonomyis in order.Autonomous data management consists of several aspects:� a data structure that encapsulates data items that apply to a particular stratum of thegrid hierarchy; 96



� attributes that describe each data item and its relationships to other data items;� a speci�cation that serves as a lookup table for queries about the data items and theirattributes;� a declaration, supplied by the user, that describes the application, its data, and theirrelationships;� a set of modules, which encapsulate the data items associated with various operationsand properties;� a software infrastructure for data management.From these aspects, a relatively straightforward theoretical framework has been developed.5.1 A Data Structure for Grid HierarchiesBecause Berger's AMR strategy is a hierarchy of levels of grids, an appropriate starting pointfor this discussion is to examine such a data structure (Figure 5.1). In this arrangement, anoperation on the entire hierarchy | for example, a control algorithm | has access to eachlevel, and an operation on a level | for example, integration | has access to each grid ofthe appropriate resolution. Encapsulating each of these strata | hierarchy, level and grid| in individual data structures, with more broadly applicable strata encapsulating morenarrow ones, simpli�es both data management and algorithms, since the contents of any ofthe strata are accessible via a single argument.97



Grid[1,0] Grid[1,1] Grid[2,0] Grid[2,1][0,0]Grid Grid[3,0] Grid[3,1]
HierarchyRoot Level Level 1 Level 2 Level 3

Figure 5.1: Basic grid hierarchy data structureHowever, managing this arrangement poses a signi�cant problem. For example, considerthe physical domain of a simulation, represented as a pair of diagonally opposite endpoints(xmin; ymin) and (xmax; ymax). These endpoints apply to every level; that is, every level inheritsthe endpoints from the hierarchy. Yet, this data structure would have to store the endpointsredundantly with every level, because of the lack of a direct mechanism for the levels toaccess information on the hierarchy. Alternatively, the data structure could have pointersnot only from hierarchy to level, but also from level to hierarchy:struct hierarchy { int rank; struct level *l; }struct level { float time; struct hierarchy *h; }struct grid { float *solution; struct level *l; }However, this arrangement is not ideal, because it tends to obscure the top down nature of98



the data structure.Regarding the issue of redundancy, in this context it is not a memory consumption issue;rather, it is an issue of data consistency throughout the grid hierarchy. In the physicaldomain example, the endpoints perhaps do not change over the duration of the simulation.Instead, consider the physical time, which can be di�erent at each level; for example, if levell is at timestep it, and level l + 1 is at timestep rit + r=2, then its time is halfway betweenthe times of the old solution and the new solution at level l. However, the time value isthe same for each grid on a particular level, and it changes with each integration at eachlevel. Thus, updating the time value after an integration is considerably simpli�ed, and isintrinsically self-consistent, if the time value is associated with the level and is accessible byeach grid, rather than being stored redundantly on each grid.Therefore, instead of using the arrangement presented in Figure 5.1, consider a newarrangement that o�ers a mirror image data structure, shown in Figure 5.2. In this newarrangement, data that applies to the entire hierarchy can be declared in the structure labeled\Hierarchy Data," data that applies to an entire level can be declared in the structure labeled\Level Data," and data that applies only to a particular grid can be declared in the structurelabeled \Grid Data." (In some sense, the \Grid Data" structure is superuous, since theonly structure that can access it is the associated grid. However, this arrangement simpli�esboth the underlying formalisms and the coded constructs, and the cost of implementationis one pointer per grid.) Thus, the structure declaration that is presented above can bereplaced by: 99



Grid[1,0]Grid[1,0] Grid[1,1]Grid[1,1] Grid[2,0]Grid[2,0] Grid[2,1]Grid[2,1]
Level 1Data Level 2DataData Data Data DataGrid[0,0][0,0]Grid

Root LevelDataData Grid[3,0]Grid[3,0] Grid[3,1]Grid[3,1]
Level 3DataData Data

Hierarchy

DataHierarchy

Root Level Level 1 Level 2 Level 3

Figure 5.2: Mirror image data structure100



struct hierarchy_data { int rank; ... }struct level_data { float time; ... struct hierarchy_data *hd; }struct grid_data { float *solution; ... struct level_data *ld; }struct grid { struct grid_data *gd; }struct level { int grids; struct grid **g; }struct hierarchy { int levels; struct level **l; }This arrangement of the strata and their data clari�es the location of various data itemsin the data structure. For example, the region of physical space delimiting the domain canbe contained in the hierarchy data, the time value in the level data and the solution vectorsin the grid data. More formally,� a data item that applies to all levels should be contained in the hierarchy data;� a data item that applies to all grids at a particular level but that can vary from levelto level should be contained in the level data;� a data item that applies exclusively to a speci�c grid should be contained in the griddata.Actually, the depiction of the data structure in Figure 5.2 is incomplete in two ways. The�rst missing aspect is that, while each grid can access all of the relevant data, a level thatas yet has no grids cannot access the associated level data, nor can a hierarchy access thehierarchy data if it as yet has no levels. Therefore, it is necessary for the hierarchy to havea direct reference to the hierarchy data, and for each level to have a direct reference to thecorresponding level data (Figure 5.3): 101



Grid[1,0]Grid[1,0] Grid[1,1]Grid[1,1] Grid[2,0]Grid[2,0] Grid[2,1]Grid[2,1]
Level 1Data Level 2DataData Data Data DataGrid[0,0][0,0]Grid

Root LevelDataData Grid[3,0]Grid[3,0] Grid[3,1]Grid[3,1]
Level 3DataData Data

Hierarchy

DataHierarchy

Root Level Level 1 Level 2 Level 3

Figure 5.3: Mirror image data structure with additional pointers102



struct hierarchy_data { int rank; ... }struct level_data { float time; ... struct hierarchy_data *hd; }struct grid_data { float *solution; ... struct level_data *ld; }struct grid { struct grid_data *gd; }struct level {int grids; struct grid **g; struct level_data *ld; }struct hierarchy {int levels; struct level **l; struct hierarchy_data *hd; }Second, in the current depiction, no distinction is made between data items whose valuesare determined on the y, in a manner analogous to variables, and data items whose valuesare �xed at compile time, in a manner analogous to declared constants. An additionalstratum, called the �xed stratum, encapsulates those data items whose values are constant(Figure 5.4). One disadvantage of this approach is that it disrupts the mirror image nature ofthe data structure, since the natural point of entry for operations on the entire data structureis the hierarchy, rather than the �xed structure. However, this disadvantage is outweighedby the abstraction provided in decoupling constant values from dynamically varying values,a common feature of programming languages.5.1.1 Scope and Extent of Data ItemsTwo important concepts governing this data structure are borrowed from the literature onprogramming languages: scope and extent.In this context, the scope of a data item is the portion of the data structure to which it isapplicable, and by which it can therefore be accessed. Speci�cally, �xed data items apply toeverything, data items on the hierarchy apply to all levels and to all grids on all levels, data103



Grid[1,0]Grid[1,0] Grid[1,1]Grid[1,1] Grid[2,0]Grid[2,0] Grid[2,1]Grid[2,1]
Level 1Data Level 2DataData Data Data DataGrid[0,0][0,0]Grid

Root LevelDataData Grid[3,0]Grid[3,0] Grid[3,1]Grid[3,1]
Level 3DataData Data

Hierarchy Fixed

DataHierarchy

Root Level Level 1 Level 2 Level 3

Fixed DataFigure 5.4: Data structure with �xed stratum104



items on a level apply to all grids on that level, and data items on a grid apply exclusivelyto that grid. Thus, �xed data items have the broadest scope of the four strata, while griddata items have the narrowest scope. Scoping in this context is static: �xed data items arefrozen, but similarly other data items do not migrate between the hierarchy, the level andthe grid, and therefore scope does not change.The extent of a data item is the period of runtime during which it exists and is accessible.For example, the extent of a hierarchy scalar is the entire existence of the hierarchy (thoughconceivably its value might be unde�ned at times), whereas the extent of a work vector usedby a solver is (ideally) the duration of the call to the solver itself; that is, the work vectorshould be allocated immediately before calling the solver, and deallocated immediately afterreturning from the solver.Extents fall into four categories: permanent, enduring, automatic and temporary. Apermanent data item is one that is created immediately when the structure on which it islocated is created, and is retained throughout the existence of the encapsulating structure.For example, a solution vector is required not only throughout all integrations, but alsowhen the encapsulating grid is �rst allocated, because it is the destination of values fromthe old grids it replaces, and when the grid is being replaced, because it is the source ofvalues on the new grids that are replacing it. An enduring data item is one whose extent isthe computational lifetime of the data structure that encapsulates it, but that is deallocatedbefore the encapsulating structure is replaced. Speci�cally, the values of an enduring dataitem are not retained from instance to instance of the encapsulating data structure, nor are105



they required for the process of retaining the values of other data items between instances.For example, the ux correction vectors are used during all of the integrations, but are notneeded for regridding, because their values do not need to be transferred to the new grids anddo not assist in transferring other values. (In the static hierarchy and single grid cases, and inthe case of structured of �xed, hierarchy and level data, which are not replaced during a run,the distinction between permanent and enduring is meaningless.) An automatic data item isone that is automatically allocated immediately before a particular operation and deallocatedimmediately after, as in the work vector example above. (This de�nition conforms to thestandard de�nition in the context of programming languages [KR88].) Finally, a temporarydata item is one that must be explicitly allocated and deallocated by the operation that usesit.5.1.2 TypesEach data item is of a speci�c type; however, these types can be fairly elaborate. Thus,distinguishing between the type of the data item's elements and the overall structure of thedata item is crucial. An element type is a primitive data type, such as a boolean, integer,oating point, and so on, or a nearly primitive data type, such as a string, a point inphysical or computational space, a region de�ned by a pair of diagonally opposite endpoints,and so on. A parameter type is the gross structure of a data type. Examples include scalars,contiguous lists, arrays, linked structures, discretized �elds, and so on. Thus, the overalldata type of a data item is the combination of its element type and its parameter type.106



More speci�c than its data type is a data item's stratiform type, which comprises not onlyits element and parameter types but also the stratum that encapsulates it. For example,the physical time values of a solution are not merely a list of oating point values | onefor each time level of the di�erence scheme | but more speci�cally a list of oating pointvalues on a level.A related issue is the distinction between a data item and an instance of the data item.For example, the list of physical time values is a data item that is encapsulated in the leveldata structure, but the list of physical time values for a speci�c level is an instance of thedata item. And in the case of a dynamically evolving grid hierarchy, a particular solutionvector encapsulated in the grid data structure is the data item, but the instance of the dataitem is that solution vector on a particular grid, which may well be replaced as the gridhierarchy evolves.A method1 is a procedure that applies to a particular structure or data item. In the datamanagement system under discussion, methods are treated in essentially the same manneras are data items; speci�cally, methods are another parameter type. The advantage of thisapproach is that it simpli�es both the conceptualization and the implementation of thesystem.By de�nition, all methods are implicitly permanent, although the actual procedures towhich they refer | that is, their values | may change during a run. Also, the element type1This term is borrowed from the object oriented language literature; its use here is not meant to imply astrictly object oriented implementation. 107



associated with a method is the scalar type that the method returns, or a void for a methodthat does not return a value.5.2 AttributesMost data items have attributes, which describe aspects that can vary from instance toinstance of their type. For example, a list of oating point values has a length attributeassociated with it, a solution vector has a staggering, and so on.Data management is simpli�ed if each piece of data has its attributes conveniently avail-able. There are two means of achieving this goal: either the attributes can be explicitlyincluded by encapsulating them with the data item, or they can be implicit, either by beinghard-coded | for example, as macros or declared constants | or by pointer references. Thislast approach has the bene�t of generality; that is, the fewer pieces of information that arehard-coded, the less recompiling is necessary in order to change them, and therefore themore quickly and conveniently they can be altered.The list example appears fairly trivial. But consider the case in which there are twoarrays of the same size, where the length of the rows of the arrays can vary (Figure 5.5).In this case, changing the length of the arrays is signi�cantly more complicated if it mustbe explicitly changed for both instances, whereas changing just the one instance and givingboth arrays access to the length list simpli�es encapsulation. Thus, new instances of thesearrays can now be created simply by calling a constructor with the type and identi�er of108



5 3 7 1List of columns for each rowNumber of rows4Array 1 Array 2
Figure 5.5: Arrays and their shared attributeseach; the constructor can then access the attributes of the data item to be created, withcomplete con�dence that these values will be the same as for other instances of this item.5.2.1 Attribute CategoriesGrid hierarchy attributes come in two pairs of complementary categories: structural andfunctional, and referential and reciprocal.Structural attributes describe the computational shape of a data item. In the aboveexample, an array whose rows may have varying lengths has two structural attributes: thenumber of rows, and the list of the number of columns in each row. A solution vector, onthe other hand, has many structural attributes, including rank, staggering, stencil, numberof time levels, and number of loci along each axis. In fact, this last attribute will depend on109



other attributes for its value; for example, the solution vector for a node-centered variablewill have one more node along each axis than the number of cells in the grid, and will alsohave extra nodes for the ghost boundary cells speci�ed by its stencil. Informally, it may behelpful to consider structural attributes to be those attributes whose values must be knownfor the data item to be allocated. (In practice, there are structural attributes that do notexhibit this property, but it may be helpful to think of them this way for the moment.)Functional attributes describe the non-structural roles that various other data items playfor the attributing data item. Both data and methods can be functional attributes; thatis, there are functional data attributes and functional method attributes. For example, asolution vector may have associated with it another data item in which its ux values arestored, in anticipation of the ux correction step. Similarly, it may have also associated withit an initialization method, so that when it is created it can immediately be set to the propervalue.Referential attributes are those that connect an instance of a data item to instances ofother data items with which it has a speci�c relationship. The advantage that referentialattributes provide is that they associate data items in a manner that promotes generality. Inthe correction vector example, the reference from the solution vector to the correction vectormakes possible a general-purpose correction routine, because the identity of the solutionvector that is to be corrected implicitly identi�es the appropriate correction vector as well.Reciprocal attributes are returns of referential attributes. That is, if data item i refersto data item j for attribute a, then data item j reciprocates to data item i for attribute �a.110



Every referential attribute has a reciprocal, and thus each referent knows which data itemsrefer to it, and for which attributes.A crucial distinction between reciprocal and referential attributes is that reciprocal at-tributes do not subsume references; that is, no memory address is associated with a reciprocalattribute. Instead, reciprocal attributes are encoded information that indicate to a data itemwhat role it plays with respect to other data items. For example, if a solution vector refers toa stencil item as its stencil, then the stencil reciprocates in its knowledge that instances of thesolution vector refer to it for stencil information. Thus, the information about the relation-ship between the two data items is bidirectional, but the information about the relationshipbetween instances of the two data items is unidirectional.Reciprocal attributes provide an important advantage in promoting autonomy, becausethey allow decisions to be predicated on maximal information with minimal research. Con-sider the time information about a solution vector. There are many facets to time informa-tion, including the number of time levels, the time level relative to the time interval | forexample, a centered time di�erence scheme has three time levels whose relative values are-1, 0 and 1, corresponding to un�1, un and un+1 | the physical time for each time level, thetimestep index for each time level | that is, the iteration number at that level | and so on,as well as indices indicating which time level is the \old" timestep and which is the \new"timestep. Rather than requiring a separate data item | and a separate attribute | foreach of these categories of time information, a simpler solution is to require only one of themto be explicitly declared as a data item, and to attach the others as attributes. However,111



because the number of time levels can vary from di�erence scheme to di�erence scheme |for example, forward time di�erencing would have relative time levels 0 and 1 | the othertime attributes must be explicitly allocated, according to the number of time levels (andthus elements) of the relative time level list. Thus, each relative time level list has associatedwith it (as attributes) several other lists, some of them oating point (for example, physicaltime) and some of them �xed point (for example, timestep index), of the same length asthe relative time level list. However, allocating such lists for all lists of the appropriate typewould be extremely unwise, since another list might instead be, for example, a data itemfor a set of particles, and might therefore be thousands or even millions of elements long,and so the memory waste would be outrageous. Therefore, an important prerequisite, beforeallocating such attribute lists, is the determination that they are necessary, in the sense thatthe data item is actually used as time information by some other data item. A reciprocal at-tribute provides precisely that information. That is, if the set of data items that consider thelist to be time information is nonempty, then the list is time information by de�nition, andtherefore its time attribute lists should be allocated; conversely, if the list's time informationreciprocal attribute set is empty, then by de�nition it is not time information, and thereforetime attribute lists should not be allocated, since they would be completely wasted.A few �nal points about the two pairs of attribute categories will clarify these concepts.First, some structural attributes are also referential. In the array example, the list of thenumber of columns in each row can itself be a data item; thus, its structural role is imple-mented by its reference. In principle, the list can have its own intrinsic meaning that is112



separate from its role in the computational shape of the array. In contrast, all functionalattributes are referential. Also, no attribute is simultaneously structural and functional.5.2.2 Rules for Referential AttributesReferential attributes are subject to a few simple rules. The �rst rule addresses the issue ofscoping.Rule of Monotonic Scoping: a data item can reference other data items in strataof equivalent or broader scope only.Thus, a �xed data item can reference only other �xed data items, a hierarchy data item canreference �xed and hierarchy data items, but it cannot reference level or grid data items; alevel data item can reference �xed and hierarchy data items as well as level data items; a griddata item can reference any data items. (This principle is illustrated in Figure 5.4, whereinall pointers are directed downward. Some pointers, such as pointers between siblings, arelateral, but no pointers are directed upward.) This rule recognizes an important practicalaspect of the data structure: that the �xed data must be allocated before the hierarchy data,the hierarchy data before the level data, and the level data before the grid data, in orderto give succeeding allocations something to reference. Here a clari�cation is in order: thescope of a data item includes other structures of the same stratum; for example, if the scopeof a data item is the grid, then it can reference data items on other grids, although mostreferences will be local to the grid that contains the data item. More importantly, a data113



item whose scope includes the level can reference data items on other levels as well as on itsown, a situation that is more common than the grid case.By contrast, there is no analogous rule about the extents of referential attributes. Thus,for example, a permanent data item like a solution vector can reference an enduring dataitem like a correction vector, and a temporary array can reference a permanent list as itsrow length vector.The second rule governing referential attributes is a rule applying to those attributes thatare simultaneously referential and structural.Rule of Monotonic Complexity: an attribute that is both referential and structuralcan refer only to a data item whose data type is less complex than that of thereferring data item.In the array example, a scalar is less complex than a list, and therefore the list of row lengthscan refer to a scalar for its length; similarly a list is less complex than an array, and so thearray can refer to the list as its row length vector, and by extension to the scalar for thelength of its row length vector.With data types de�ned over a space, for example solution vectors and correction interfacevectors, the notion of complexity is less obvious. To clarify, the complexity of a spatial datatype is de�ned as the minimum overall size it can take on relative to the region of spaceon which it is de�ned. Thus, a solution vector covers the entire grid on which it is de�ned,while a correction interface vector covers only the surface of the grid | for example, in114



D d: attribute a;C c: attribute d;B b: attribute c;A a: attribute b;
Figure 5.6: Cycle of structural attribute referencesthree dimensions an interface comprises the six faces of the rectangular prism on which thegrid is de�ned, and each face of the interface vector has a thickness of a single locus. Inaddition, a spatiotemporal type is more complex than the corresponding time-independenttype, because the spatiotemporal type covers multiple time levels, while the spatial typecovers only one; that is, the spatiotemporal type covers more of spacetime than the time-independent type. Also, a spatial parameter type is by de�nition more complex than astructured type; therefore, for example, a solution vector can reference a stencil as part ofdetermining its size and shape.The primary motivation for the latter rule is purely practical: the order of data itemcreation must be �xed and well-de�ned, because otherwise reference cycles can form (Figure5.6). Reference cycles are unresolvable; that is, no data item in the cycle can be created untilits structural attributes have been resolved, and its structural attributes cannot be resolvedif their referents, or the data items their referents depend on, cannot be created.115



5.2.3 Attribute AppendicesEach data item has associated with it an attribute appendix, which is an attached list ofsome of the attributes of the data item. The choice of which attributes to store explicitlyin the appendix, and which to access implicitly or to derive from other attributes, is purelyan implementation decision, and is driven by the need to balance memory consumptionagainst processing time and coding convenience. Any attribute that is explicitly stored inthe appendix consumes additional memory space; if the application is memory-bound, or ifthe �xed size of certain data structures exceeds the anticipated sizes of the grids, then itmay be more appropriate to put fewer attributes in the appendix, and to decode the rest onthe y. On the other hand, any attribute query or derivation requires additional processingtime, which may be inappropriate if the application is CPU-bound. However, the amount oftime associated with obtaining attribute values during the run typically is low compared tomore signi�cant operations, so the waste is likely to be miniscule.Another concern in making these decisions is the construction of wrappers around ex-isting, legacy-style code fragments. The more attributes that are precomputed and storedin appendices, the less extra instrumentation is required within a wrapper. Thus, a datamanagement system that is motivated by the desire to minimize the amount of additionalcoding required by the application scientist may be better served by a larger, more completeattribute appendix. On the other hand, this concern could be minimized by providing ameans of automatically generating the wrappers.116



5.3 The Speci�cationThe last missing piece to the grid hierarchy data structure is the speci�cation of the attributesof the various data items (Figure 5.7). This structure contains all the information about thevarious attributes as they apply to each data item, which can then be imposed on eachinstance of each data item. For example, the speci�cation has entries asserting which listdescribes the rows of a particular array, which stencil applies to a particular solution vector,and so on.In essence, the speci�cation acts like an enormous, �ve-dimensional lookup table, withthe �ve dimensions being the stratum, the element type, the parameter type, the parameteridenti�er of the given stratiform type, and the attribute. (Obviously, it would be unwise toimplement the speci�cation this way, because expanding the speci�cation by even a singlenew attribute could potentially add thousands of new table entries.) The lookup table issparse, because� not every combination of stratum/element type/parameter type is a valid stratiformtype,� not every valid stratiform type will be used by an application, and� each valid stratiform type requires only a subset of the set of possible attributes.For example, a real solution vector on a grid may require rank, staggering, stencil and so on,but will not require a length vector. 117



Grid[1,0]Grid[1,0] Grid[1,1]Grid[1,1] Grid[2,0]Grid[2,0] Grid[2,1]Grid[2,1]
Level 1Data Level 2DataData Data Data DataGrid[0,0][0,0]Grid

Root LevelDataData Grid[3,0]Grid[3,0] Grid[3,1]Grid[3,1]
Level 3DataData Data

Hierarchy Fixed

DataHierarchy

Root Level Level 1 Level 2 Level 3

Fixed DataSpeci�cationFigure 5.7: Grid hierarchy data structure with speci�cation118



For each attribute that cannot be derived trivially from other attributes, the speci�cationcontains either the value or an encoded generic reference; speci�cally, it contains an encodeddescription of the stratum, element type, parameter type and parameter identi�er, whichthe data management system can translate into an actual memory address for each instanceof the data item. The data management system can query the speci�cation at any time,in order to create, manipulate or delete a data item or structure, a capability that providessigni�cant exibility not only to data management activities but also to the AMR algorithms.For purposes of scoping, the speci�cation can be considered simply as another stratumof the system; in fact, it has the broadest scope, being accessible by all other strata buthaving access to none of them. Naturally, its extent is permanent; in fact, it must becreated �rst and deleted last, because all of the data items on all of the other structuresdepend on it for determining their attributes. In fact, by encapsulating the description ofthe data and methods, the autonomic nature of the data management is decoupled fromthe compiler, so that di�erent collections of data for di�erent applications need not requirecomplete recompilation of the data management software.However, it is not appropriate to consider queries to the speci�cation as constitutingreferences, because the queries do not require knowledge of particular memory addresseson the speci�cation in order to obtain appropriate results. Thus, while some attributes areboth structural and referential, for example the row length vector of an array, there are alsosome attributes that are exclusively structural, for example the rank of a solution vector.Those that are exclusively referential | for example, the correction vector associated with119



a solution vector | are, of course, functional attributes.5.4 The DeclarationIf the speci�cation is a description of the data items and their attributes in a form thatthe data management system can understand, then the declaration is the same descriptionin a form that the user can understand. Speci�cally, to create a new application for thedata management system, the user must declare the application's data and methods, andthe relationships between them.Thus, the data management system requires a declaration language, and a parser toconvert the declaration into an encoding that is appropriate for a speci�cation. The syntaxof the declaration language is arbitrary; that is, any number of approaches will produce validdeclarations. But the kinds of information that the declaration language must be able toexpress is more well de�ned.Obviously, the �rst thing that the declaration language needs is a way to declare a dataitem. In C- or Pascal-like syntax, this might look like:RealList time_level;However, this declaration is insu�cient, because it doesn't indicate� the stratum on which the data item is located;� the extent; 120



� the structural attributes.Therefore, a more accurate depiction would look like:RealList time_level:Level, Permanent,Elements number_of_time_levels;Integer number_of_time_levels:Hierarchy.A data item requires one more piece of information before it can be considered useful: aninitial value. Thus:RealList time_level:Level, Permanent,Elements number_of_time_levels,Value 0 1;Integer number_of_time_levels:Hierarchy,Value 2.So in this case, number_of_time_levels is an integer scalar whose value is 2, and time_levelis a list of real (oating point) values whose length is expressed by number_of_time_levelsand whose values are 0 and 1; for example, time_levelmight refer to a forward time �nitedi�erence scheme of the form un+1 = Q(un).In addition to structural attributes, a declaration may need to include functional at-tributes as well. For example, in ux correction a solution vector refers to the appropriatecorrection vector: 121



SolutionVector density_vector:Grid, Permanent, ... ,Correction density_correction_vector;Surface density_correction_vector:Grid, Enduring, ....In this example, the relationship between the two vectors is explicitly declared via the key-word Correction.Similarly, a data item may have associated with it functional methods:SolutionVector density_vector:...Initialize shock_tube_initialization_method;VoidMethod shock_tube_initialization_method:Hierarchy,Value Grid_shock_tube_initialization;Void Grid_shock_tube_initialization(): Grid.In this example, the method shock_tube_initialization_method has as its value a pointerto the function Grid_shock_tube_initialization, and is referred to by density_vectorfor the purpose of initialization. Thus, at runtime, when density_vector is to be initialized,it accesses shock_tube_initialization_method and executes the function that its contentspoint to, Grid_shock_tube_initialization (Figure 5.8).In the tradeo� between memory consumption and computation time, the full decodingprocess adds nothing to the memory cost of the attribute, but takes more time to interpret;decoding all attribute references when a data item is created and storing the memory ad-dresses in the attribute appendix saves time, but costs the space of the extra pointers andvalues. 122



encoded function initializepointer densityexecutedecodelookup reference dereferenceSpecification referencedensity
Figure 5.8: Initialization via attribute lookup5.5 ModulesA module is a logically a�liated collection of data items and a (possibly empty) operationwith which they are associated. For example, the data appropriate for a solver | the stencil,the time levels, the temporary work vectors and so on | have a logical relationship to thesolver and perhaps to each other. The data items of a module can be located on multiplestrata of the grid hierarchy, rather than being con�ned to the stratum to which the operationapplies.To illustrate, consider an example solver (Figure 5.9). Here, the stencil and time levelsfor the solver are implicitly attached to the solver itself, as is the work vector. Further-more, the work vector is declared Automatic. In this context, the meaning of an auto-matic extent is more clear: an automatic data item is created immediately before call-ing the operation of the item's module, and it is deleted immediately after returning from123



Solver Grid_piecewise_parabolic_method();Stencil ppm_stencil:Hierarchy;List ppm_time_level:Level;Integer ppm_time_levels:Hierarchy;SolutionVector ppm_workspace:Grid, Automatic. Figure 5.9: Example solver moduleVoid Grid_generic_solve(grid) {Grid_automatic_allocate(grid, PIECEWISE_PARABOLIC_METHOD_MODULE);Grid_piecewise_parabolic_method(grid);Grid_automatic_deallocate(grid, PIECEWISE_PARABOLIC_METHOD_MODULE); }Figure 5.10: Stub for allocating and deallocating automatic data itemsthat operation. Thus, for a call to Grid_piecewise_parabolic_method to advance a par-ticular grid, ppm_workspace is allocated immediately before the actual call, and as soonas Grid_piecewise_parabolic_method terminates, ppm_workspace is deallocated (Figure5.10).Modules contribute two important data management capabilities, activation and varia-tion.Activation refers to the ability of a module to be active or inactive; that is, the modulecan be declared \on" or \o�," and in the latter case none of its data items will be created124



(except, of course, scalars and methods, which are not allocated as such). This capabilityis helpful in the case of large, module-speci�c data items that are encapsulated in modulesthat are not currently in use. For example, a solver module might include a large, enduringwork area; if the solver were not going to be used in a particular experiment, that storagespace would be wasted. However, if the module is inactive, the work area is guaranteed neverallocated.Variation is the property that certain attributes change according to which of the dec-laration's modules are in use. For example, consider an application that has two solvers,one with a �ve point stencil and the other with a seven point stencil, and suppose that theapplication scientist wishes access to both solvers at runtime, perhaps deciding to changesolvers at a particular level during a regridding. In this case, the notion of the stencil of asolution vector is not �xed: the solution vectors that are on the levels that use the lowerorder solver have fewer ghost boundary zones, compared to those on the levels that usethe higher order solver. Thus, a variform attribute is one that can take on any of severaldi�erent values depending on which of a set of modules is currently in use in the contextmost directly associated with the attribute's data item. For example, consider a variformreferential attribute whose referent is in a module that applies to a level. The attributerefers to the instance of the referent data item on the same level as the attribute's data item,unless explicitly declared otherwise.Variation and activation combine to produce additional utility, because an inactive mod-ule will not contribute its data items as potential attribute referents of a variform attribute.125



Returning to the multiple solver example, if both the lower order and higher order solvers areactive, then the data management system must assume the worst case when re�ning, thatthe levels �ner than the level about to be regridded might employ the higher order solver,regardless of which solver is used by the level to be regridded, and that therefore the newgrids must be expanded su�ciently to cover the maximal possible stencil. This e�ect canproduce signi�cant waste in some cases. For example, in a case of re�nement by a factor oftwo, an 8� 8� 8 grid with a bu�er region of one cell in each direction must be expanded bytwo zones to cover a seven point stencil, but by only one zone to cover a �ve point stencil.The expanded grid in the former case, including its own bu�er and ghost zones and covering�ner ghost boundary zones, is 18 � 18 � 18, for 5832 cells total, and in the latter case is16� 16� 16, for only 4096 cells total, so forcing all grids to assume that �ner levels can usea seven point stencil imposes a signi�cant waste, over 40% in this example. In fact, even inthe case of a 64 � 64 � 64 grid, the waste would be over 8%. Thus, combining activationand variation provides su�cient exibility to reduce overhead and improve performance inmany cases.While some modules apply only in certain circumstances, others always apply; theseare called generic modules, and typically they have no operation associated with them.For example, all clustering algorithms must create a list of cluster regions and have suchclustering arguments as minimum e�ciency and maximum cluster size. Therefore, a usefulmodule is one that declares these data items, since then they need not be declared repeatedlyif there are multiple clustering algorithms spread out among various clustering modules.126



5.6 Data ManagementThe declaration and the data structure lead naturally to a very simple data managementparadigm, which consists of three basic operations: creation, deletion and execution. Allthree of these operations are split into suboperations, but among them they constitute theentire set of tasks required of data management. These same operations are performed onindividual data items, on the data structures associated with the strata, and on the gridhierarchy as a whole | though to some extent the last case is simply the result of the secondcase.5.6.1 Management of Data ItemsCreation and deletion operate at several levels of complexity. The simplest is the creation ordeletion of a single instance of a single data item, for example a particular solution vector.To create such an instance, the data management system� creates all attributes;� allocates the instance of the data item according to its structural attributes;� initializes the instance of the data item.For example, consider the creation of an instance of a solution vector on a grid. First, itsattributes | staggering, stencil, number of loci along each axis, number of time levels andso on | are initialized. Next, based on this information, the solution vector is allocated.127



Finally, the solution vector is initialized, most likely by calling the method referred to by itsinitialization attribute.Deletion of a data item operates similarly, although it is a bit less elaborate, becausethe attributes have already been initialized at creation. Deletion includes an operationsimilar to initialization, called �nalization, which is executed immediately before the dataitem is deallocated, typically to transfer some or all of the data item's values to a morepermanent location. For example, consider ux vectors. The solver for a ux-conservativedi�erence scheme must produce ux values for the interfaces between a grid and its parentsand children. It is generally not convenient to use the correction vectors directly for uxstorage, since the complexity of the extra instrumentation inside the solver may be o�-putting for the application scientist, and also because some of the ux correction values,namely those on the interface of the grid being advanced, are immediately added to therunning sum for the interface of the grid. Therefore, the ux vectors may be automaticwith respect to the solver, and before they are deleted, their values must be stored inthe appropriate correction vectors. The �nalization method automatically performs theappropriate data transfers, without having to code the transfers explicitly into either thesolver, the wrapper around the solver, or the integrator; that is, the data transfer can beperformed by a specialized subroutine which is declared to be the �nalization routine forthe ux vectors. Thus, the ux vectors can be automatic with respect to the solver, andso they need not be explicitly created and deleted, since the data management system willautomatically create and delete them before and after calling the solver, respectively, and128



will automatically call the ux transfer method immediately before deletion, to �nalize theux vectors. In addition, this approach promotes generality and code reuse: attributes ofthe ux vectors implicitly identify the associated solution vector that the uxes will correct,and the solution vector's correction data attribute identi�es its correction vectors, so the uxvectors can easily trace the correction vectors into which their uxes are to be transferred,without needing to know any application-speci�c information about any of these data items.Finally, execution with respect to a data item speci�cally denotes execution of its func-tional method attributes, including initialization, injection, projection, input, output and soon. The interchangeability of these operations promotes exibility and generality within thedata management framework.5.6.2 Management of StrataThe management of strata is as straightforward as the management of data items, and againis simply a matter of creation, deletion and execution. Creation of an instance of a stratumis a four-step process. First, the \stratum data" structure is allocated. Next, the frameworkfor storing data items and their attribute appendices is allocated and cleared; for example,the framework for oating point solution vectors is a list of pointers to solution vectors, all ofwhich are initially null. Third, the \stratum" structure is allocated, and appropriate pointersare set to link it to the \stratum data" structure. Lastly, the permanent data items on thestratum are created. As for deletion, the process is the same in reverse order, except that alldata items are deleted before the stratum framework can be eliminated. Finally, execution129



on a stratum denotes the execution of a module method that applies to that stratum; forexample, executing the solver on a grid.5.6.3 Management of the Grid HierarchyThe management of the grid hierarchy as a whole is a combination of the management ofthe various strata. To create a grid hierarchy, the strata are created in order from broadestto narrowest scope. Thus, the speci�cation is created �rst, then the �xed structure, thenthe hierarchy, then all of the levels and �nally one or more grids. In the general case, onlythe grids at the root level are created, either directly from a list of root level subdomains, orby deriving the domain of a single root level grid from the overall domain. (In fact, an idealimplementation checks for a list of root level subdomains, and if it exists, creates appropriategrids; if there is no such list, it creates the default, full domain grid.) Deletion is performedin the same manner as creation, but in reverse order. There is no execution of the gridhierarchy as a whole; rather, operations that apply to the entire grid hierarchy are executedon the hierarchy stratum.5.7 SummaryThe design and implementation of a general-purpose AMR system requires a solid theoreticalbasis, not only to formalize the constructs that constitute the system, but also to simplifythe description and development of its components, not only the data structures but also the130



means by which they are managed. Thus, the conceptual constructs laid out in this chapterare both the result of and an aid to designing, using and understanding the implementationof Berger's AMR strategy that constitutes the balance of the research presented in thisdissertation.These concepts were not wholly derived prior to implementation. Rather, they arosenaturally as the design evolved. Originally, the design required that the application scientistcode aspects of the data structure by hand, in the language of the implementation. However,it rapidly became clear that such an approach had many disadvantages, and no obviousadvantages beyond simplifying the implementation of the system | the opposite of thepurpose of the system, which is to simplify the implementation of applications. Thus, theneed for an autonomous, easily described, extremely exible data structure and managementframework became increasingly urgent. The theoretical framework, and the principles itembodies, were to some extent implicit in the design decisions, both a�ecting how the datamanagement was implemented and being a�ected by the development decisions that necessityimposed. Thus, the theory underlying this design evolved progressively, in concert with theimplementation.Over the course of these investigations, the advantages of this autonomous approach todata management have become increasingly clear. The ability to declare an almost limitlessvariety of data, methods, and | most importantly | relationships between them, hasprovided a exibility and an ease of application design that are otherwise unknown in theAMR literature. Thus, the ideas laid out in this chapter provide an excellent foundation for131



the implementation of Berger's AMR strategy that encompasses the practical bene�t of thisdissertation.

132



Chapter 6HAMR: A Software Framework forHierarchical Adaptive MeshRe�nementThe research for this dissertation includes an implementation of the concepts examined,which is called the Hierarchical Adaptive Mesh Re�nement (HAMR) system. HAMR is asoftware architecture for building adaptive mesh re�nement applications on grid hierarchies.It is general-purpose and exible, combining the autonomous data management conceptsdescribed in Chapter 5 with Berger's AMR stragegy, described in Chapter 4. Unlike otherimplementations of AMR, HAMR does not require extensive programming in a high-levellanguage, burdensome modi�cations to existing solvers, or detailed knowledge of the com-putational platform on which the simulation executes. Rather, HAMR largely decouples the133



simulation kernel from the AMR strategy, the data management, and a variety of implemen-tation details.HAMR consists of four components (Figure 6.1): a set of type de�nitions, a low-levelfunction library, an autonomous data structure, and a set of commonly-used algorithmsfor implementing Berger's adaptive mesh re�nement strategy. Each of these componentsincludes a set of prede�ned standard entries, and also leaves room for application-speci�centries that can be supplied by the user. In addition to these components, each applicationrequires a set of algorithms that de�ne and implement it.HAMR is implemented in the C language1 and easily allows incorporation of Fortransubroutines such as solvers, initializations and so on.Underlying the design philosophy of HAMR is a single, clear goal: to simplify the pro-cess by which an application scientist can convert a traditional, nonadaptive simulation toan adaptive version that employs Berger's strategy. Each of the components of HAMR ad-dresses this goal in its own way. The set of data types provides the exibility that allows awide variety of applications, which may have diverse data requirements, to be incorporatedwith minimal user coding. The function library provides the operational underpinnings fromwhich sophisticated management and AMR algorithms can be constructed, while encapsu-lating those operations in a manner which requires little or no adjustment to address speci�c1A C++ implementation would also have been appropriate; the advantage of C is that it comes bundledwith virtually every platform, which simpli�es portability. Some C++ implementations of Berger's AMRhave experienced di�culties because appropriate C++ compilers are unavailable on some platforms [Bal96]or because of insu�cient optimization power in existing C++ compilers [Bry96b].134



SolversInitializers

ControlClusteringRegriddingSelection CriteriaExtrapolation
InjectionProjectionIntegrationExtrapolationStandardData and MethodDeclarationsApplication-speci�cData and MethodDeclarations Application-speci�c

Data StructureStandardReductionsMappingArithmetic/LogicalInterpolatorsI/O CollectionClusteringTruncation ErrorRegriddingControlStandardFunction Library
Application-speci�cReductionsArithmetic/LogicalInterpolatorsMappingI/O

AlgorithmsHAMR Data Types

User-de�nedApplication
Figure 6.1: Components of the HAMR architecture135



situations. The data structure and its management decouple the declaration of the data andmethods from their implementation, so that all data management operations can be fullydistinct from the adaptive techniques. Finally, the AMR algorithms provide the functional-ity required for converting an application to adaptivity, without requiring the researcher tolearn | let alone to implement | the subtle complexities of Berger's strategy.6.1 Data TypesHAMR provides a variety of element and parameter types, to promote maximal exibility forapplications. While a typical application will use only a small fraction of the total collectionof available type combinations, at various stages HAMR utilizes almost every element typeand almost every parameter type.6.1.1 Element TypesHAMR has several element types (Figure 6.1). The Void type is empty; its purpose is toindicate a method that returns no value, in a manner analogous to a Fortran subroutine or aPascal procedure. As for the primitive data types | Boolean, Integer, Index, Character,String and Real2 | their purposes are intuitively clear, and all but Boolean and Indexcorrespond directly to C/C++ prede�ned types. The other element types fall into two2Although Table 6.1 lists Real as corresponding to the C type float, a Real can be double instead, orlong double on platforms supporting that type. Similarly, Integer and Index types can in principle bechar, short int, int, long int, long long int and so on.136



Element Type Description C type Fortran typeVoid no value voidBoolean true/false char integer*1Integer int integerIndex nonnegative int integerReal float realCharacter char characterString C-style (null terminated) char *IntegerVector IntegerList int *IndexPoint IndexList int *RealVector RealList float *RealPoint RealList float *IntegerStencil IntegerArray int **IndexRegion IndexArray int **RealRegion RealArray float **Table 6.1: HAMR element typescategories, dimensional and extreme.Dimensional element types | IntegerVector, IndexPoint, RealVector and RealPoint| are short lists, typically of length d in a d-dimensional domain, that take on the rolesindicated by their names. Thus, IntegerVector and RealVector correspond to the mathe-matical de�nition of a vector, and IndexPoint and RealPoint correspond to the mathemat-ical de�nition of a point. Typically, the real types correspond to physical space, while theinteger types correspond to computational space. For example, the dimensions of a regionin physical space are indicated by a RealVector, while a single index in a three-dimensionalcomputational domain is indicated by an IndexPoint.The extreme element types | IntegerStencil, IndexRegion and RealRegion | aresmall arrays, one of whose indices denotes an axis and the other of which denotes an extreme,137



speci�cally minimum or maximum. Data items whose element type is IntegerStencil areindexed as stencil[axis][extreme]. Speci�cally, an IntegerStencil is a set of d 2-vectors, each of which describes the increments around a center point along a particularaxis; for example, the IntegerStencil for a �ve-point centered space di�erence schemewould have values �2 and 2 along each axis. A Region, on the other hand, is indexedas region[extreme][axis]; that is, a Region denotes a pair of diagonally opposite end-points in either physical or computational space. For example, if a grid has endpoints(xmin; ymin; zmin) and (xmax; ymax; zmax), then region[MINIMUM] will contain (xmin; ymin; zmin)and region[MAXIMUM] will contain (xmax; ymax; zmax).6.1.2 Parameter TypesHAMR's parameter types are divided into four categories: structured, dimensional, spatialand method.A structured parameter type | for example, a scalar, a list, an array | is a type whosecomputational shape must be explicitly expressed by its attributes (Table 6.2, depicted inFigure 6.3). Speci�cally, the levels of complexity of structured types are Single, List,Array, ArrayList, ArrayArray and Queue. Arrays, ArrayLists and ArrayArrays come intwo varieties, those having varying dimensions and those having �xed dimensions; the latterare called Boxes. The appropriate element types for structured parameter types span all ofHAMR's element types except Void.As can be seen in Figure 6.3, structured types are implemented contiguously; that is,138



Parameter Type Description ExampleSingle scalar or single instance dimension; �lenameof an element typeList one-dimensional contiguous list relative time valueArray two-dimensional array with boundary region per gridvarying columns per row for determining parentsArrayBox two-dimensional array with ags for which�xed columns per row boundaries reectArrayList three-dimensional array(list of two-dimensional arrays)ArrayListBox three-dimensional array grid's parent regionswith �xed dimensionsArrayArray four-dimensional array(array of two-dimensional arrays)ArrayArrayBox four-dimensional arraywith �xed dimensionsQueue FIFO linked list list of initial root level gridsTable 6.2: Structured parameter typesarrayarraybox[arraylistnum][arraynum][listnum][eltnum](a) sequential dereference***arrayarraybox[((arraylistnum * arrays_per_arraylist +arraynum) * lists_per_array +listnum) * elements_per_list + eltnum](b) contiguous indexFigure 6.2: Indexing in structured parameter types139



� � �

ArrayListSingle

Queue
ArrayListBox

Figure 6.3: Structured parameter types140



a List is contiguous, an Array is a contiguous list that is delimited by a contiguous listof pointers to List, an ArrayList is a contiguous list that is delimited by a contiguouslist of pointers to List that in turn is delimited by a contiguous list of pointers to Array,and so on. (The exception is the Queue, which is a linked �rst in/�rst out structure. Also,in the case of String structures, the Strings themselves are not contiguous, though thestructure of pointers is.) Thus, each element of a structured type can be accessed in twoways, either by a series of pointer dereferences, or by dereferences on the outer pointer listsand an index on the innermost, contiguous list (Figure 6.2). This seemingly redundantapproach provides both the semantic power associated with Fortran-like indexing | forexample, arrayarraybox(eltnum,listnum,arraynum,arraylistnum) | and the kinds ofdata locality optimizations associated with contiguous memory blocks. Speci�cally, a lonereference is most conveniently expressed as a sequential dereference, while a loop over alarge portion of the array can be most e�ectively optimized if expressed as an index into theinnermost, contiguous block.A dimensional parameter type is one that has a set of values along each axis of the domain.Currently, HAMR o�ers two di�erent dimensional parameter types: AxisDescription andAxisContribution. An AxisDescription (Figure 6.4) is simply a list of values along eachaxis; for example, the positions of the cell centers. An AxisDescription is contiguous, andin fact is implemented as an Array: the number of lists is the dimension of the domain,and the elements for each list are the number of cells or nodes along each axis, dependingon the axis staggering. The appropriate element types for AxisDescriptions are Boolean,141



AxisDescription
Note: the axis lists are implemented as a contiguous list.Figure 6.4: AxisDescriptionInteger, Index and Real.An AxisContribution (Figure 6.5) is a bit more complicated. It is, in fact, a program-ming convenience for certain kinds of interpolators, speci�cally interpolators of the formul(ul�1; x1; :::; xd) = Finterp(Fx1(x1); :::;Fxd(xd);F1(ul�1); :::Fk(ul�1))that operate in orthogonal coordinate systems. In this case, the functions Fxi are time-invariant, and are de�ned over the entire computational domain on each level. Therefore,these functions can be precomputed and stored when the level is created, thus saving comput-ing time but occupying minimal storage space, speci�callyO(n) for an O(nd) computationaldomain. The AxisContribution is the storage space for these precomputed values. Because142



Node
Cell uu2ii + 1i � 1i + 1 uu2i

i � 1
� � �� � �� � �� � �� � �� � �...

AxisContribution

Figure 6.5: AxisContribution143



Parameter Type Description ExampleSpaceParameterSet set of time-independent selection agsspatial vectorsSurfaceParameterSet set of time-independent correction vectorsspatial vector surfacesMaximalParameterSet set of time-independent work space for(d� k)-dimensional direction sweepspatial vectors of methodsmaximal size, 1 � k � dSpacetimeVariableSet set of time-dependent solutionspatial vectorsSurfaceVariableSet set of time-dependent parental boundaryspatial vector surfaces vectorsMaximalVariableSet set of time-dependent(d� k)-dimensional spatialvectors of maximal sizeTable 6.3: Spatial parameter typesAxisContributions are used in interpolation, the only appropriate element type is Real.A spatial parameter type is a structure that is de�ned over the computational domainor over a subdomain (Table 6.6, shown in Figure 6.3). The appropriate element types areBoolean, Character, Integer, Index and Real.An important property of spatial parameter types is that, rather than having individualsolution vectors as a spatial parameter type, such vectors come in sets, where all membersof the set have the same attributes.3 Thus, for example, an application might have den-sity, energy and velocity components as one set of solution vectors, and the magnetic �eldcomponents as another, perhaps de�ned on di�erent staggerings. Sets of vectors provide3Thanks to M. Norman for proposing this idea. 144



�  � � newold voldnewoldnewoldnewu e �FvFuFeF� BvBuBeB�oldnewoldnewoldnewoldnew
SpaceParameterSet SpacetimeVariableSet
SurfaceParameterSet SurfaceVariableSet
MaximalParameterSet MaximalVariableSet

Figure 6.6: Layout of spatial parameter types145



an additional advantage: potentially, they can reduce the number of entries in the formalargument list of an application subroutine, which may be an issue if the subroutine requiresa great many arguments and if the compiler has a hard-coded limit on the maximum lengthof the argument list.HAMR provides six spatial parameter types, grouped into pairs, with each pair having atime-dependent version of the type called a Variable, and a time-independent version calleda Parameter. The three pairs are:� SpacetimeVariableSet and SpaceParameterSet;� SurfaceVariableSet and SurfaceParameterSet;� MaximalVariableSet and MaximalParameterSet.The �rst pair is the set of vectors that completely cover the subdomain. The mostobvious example of a SpacetimeVariableSet is the set of solution vectors; a good exampleof a SpaceParameterSet is the set of selection ags corresponding to each solution vector.The Surface sets, on the other hand, cover only the (d�1)-dimensional interface surfacesof the subdomain; that is, the two endpoints in 1D, the four sides in 2D, the six faces in 3D,and so on. An example of a Surface set is the set of correction vectors for a set of solutionvectors.Finally, Maximal sets are sets of a particular rank whose size is the largest possiblesurface of that rank. For example, for a grid of 30 � 40 � 20 cells, the maximal set ofrank 1 has 41 nodes, and the maximal set of rank 2 has 31 � 41 nodes. (The rank d146



maximal set is simply the collection of all nodes for the grid.) Maximal sets are provided asa programming convenience, as they can be used as temporaries in certain �nite di�erenceschemes.4 For example, in directional sweep strategies, some components of the di�erencescheme are applied to each slice plane of the grid in succession, marching along a particularaxis, and then similarly along the next axis, and so on. Often, the requisite temporary workspace matches the size of the slice plane. However, rather than allocating space su�cient foreach of the d possible planes, a single maximal surface can be allocated, to be used by eachsweep in turn.Spatial set types are implemented as contiguous blocks, in precisely the same manner asstructured parameter types; in fact, they are built on top of the type de�nition for Lists.A SpacetimeVariableSet has three indices: the variable within the set, the time level, andthe index within the mesh. In this case, the mesh index is a composite index, rather thana reference for each dimension. As with structured parameter types, an element can beaccessed either by dereferences or by a global index (Figure 6.7).An exception to this contiguity property of spatial parameter types is the Surface types,which are not completely contiguous, because the sizes of their surface components varyaccording to surface plane they represent. For example, a SurfaceVariableSet on a 30 �40� 20 grid has X-Y surfaces of 30� 40 cells, X-Z surfaces of 30� 20 cells and Y-Z surfacesof 40 � 20 cells. Thus, the surface sets themselves are implemented discontiguously, withcontiguity only within a speci�c face (Figure 6.8).4Thanks to G. Bryan for proposing this idea. 147



spacetimevariableset[varnum][time_level][((k * nj + j) * ni + i](a) sequential dereference**spacetimevariableset[(((varnum * number_of_time_levels +time_level) * total_loci + k) * nj + j) * ni + i](b) contiguous indexsubroutine subrtn (stvarset, ni, nj, nk, ntl, nvar)real stvarset(ni,nj,nk,ntl,nvar)integer ni, nj, nk, ntl, nvar(c) Fortran formal argument declarationsubrtn_(**spacetimevariableset, ni, nj, nk,number_of_time_levels, number_of_members);(d) actual arguments for calling to FortranFigure 6.7: Indexing in a SpacetimeVariableSet
148



surfacevariableset[axis][extreme][varnum][time_level][((k * nj + j) * ni + i](a) sequential dereference(**(surfacevariableset[axis][extreme]))[(((varnum * number_of_time_levels +time_level) * total_loci + k) * nj + j) * ni + i](b) contiguous indexsubroutine subrtn (srfvarsetxmin, srfvarsetxmax,+ srfvarsetymin, srfvarsetymax,+ srfvarsetzmin, srfvarsetzmax,+ ni, nj, nk, ntl, nvar)real srfvarsetxmin(nj,nk,ntl,nvar), srfvarsetxmax(nj,nk,ntl,nvar),+ srfvarsetymin(ni,nk,ntl,nvar), srfvarsetymax(ni,nk,ntl,nvar),+ srfvarsetzmin(ni,nj,ntl,nvar), srfvarsetzmax(ni,nj,ntl,nvar)integer ni, nj, nk, ntl, nvar(c) Fortran formal argument declarationsubrtn_(**(surfacevariableset[X][MINIMUM]), **(surfacevariableset[X][MAXIMUM]),**(surfacevariableset[Y][MINIMUM]), **(surfacevariableset[Y][MAXIMUM]),**(surfacevariableset[Z][MINIMUM]), **(surfacevariableset[Z][MAXIMUM]),ni, nj, nk, number_of_time_levels, number_of_members);(d) actual arguments for calling to FortranFigure 6.8: Indexing in a SurfaceVariableSet149



Finally, Maximal sets are implemented and indexed in precisely the same manner as theirSpace/Spacetime counterparts, but are of lower dimension.The �nal category of parameter types, methods, are types whose values are pointers tofunctions. Speci�cally, the two method parameter types implemented in HAMR are Methodand SetMethod; the latter is a set of methods corresponding to a spatial set, with one methodvalue for each member (or some subset of the members) of the archetypal spatial set. Methodtypes can have as element types Boolean, Character, Integer, Index, Real and Void.6.1.3 Type AttributesThe data types that HAMR de�nes employ a variety of both structural and functionalattributes. These vary according to the shapes of the data types and the roles that the typesplay.All stratiform types have a parameters attribute, which indicates how many data itemsof that stratiform type have been declared, and each data item has a name attribute. Inaddition to these universal attributes, each data type has its own set of attributes, whichdescribe its computational shape and its relationships to other data types.6.1.3.1 Structural AttributesAmong element types, Voids, scalars and Strings contribute no attributes to their overalldata types. Dimensional and extreme element types contribute a single attribute, the numberof axes that they span. Super�cially, this attribute may appear redundant. However, some150



Parameter Type Structural AttributesSingle noneList elements (Integer)Array lists (Integer), elements (IntegerList)ArrayBox lists (Integer), elements per list (Integer)ArrayList arrays (Integer), lists (IntegerList),elements (IntegerArray)ArrayListBox arrays (Integer), lists per array (Integer),elements per list (Integer)ArrayArray arraylists (Integer), arrays (IntegerList),lists (IntegerArray), elements (IntegerArrayList)ArrayArrayBox arraylists (Integer), arrays per arraylist (Integer),lists per array (Integer), elements per list (Integer)Queue noneTable 6.4: Attributes of structured parameter typesdimensional and extreme data items have a di�erent rank than the computational domain.The most obvious example is the re�nement factor, an IntegerVector that has entries notonly for each dimension but also for time, thus requiring d+ 1 elements.The attributes of data items of structured parameter types explicitly describe the items'computational shapes (Table 6.4). All of these structural attributes are referential; that is,each is a pointer to a data item of the appropriate type. In addition, all structured typesexcept scalars and linked types have a nonreferential permanence attribute, which indicatestheir extent category. (Linked structures have no permanence because they are necessarilycreated on the y.)An Integer can have not only its intrinsic role, but also roles with respect to otherdata items. For example, it may be the number of elements or elements_per_list of151



any of the structured types (except Single). Similarly, an IntegerList can take on therole of elements for an Array, lists for an ArrayList or arrays for an ArrayArray;an IntegerArray can take on the roles of elements for an ArrayList or lists for anArrayArray; an IntegerArrayList can take on the role of elements for an ArrayArray.Similarly, an IntegerStencil can play other roles; speci�cally, it can be the stencilattribute of a dimensional or spatial data item, or it can be the increment attribute of anAxisContribution (see below).A Level RealList may play one other role: it may contain the relative time valuesof a spatiotemporal data item. Whether that is the case for a speci�c data item de-pends on whether it has any reciprocal time attributes, which is indicated by nonzerotime_module_dependants. If so, then it has additional attributes that are derived from thevalues of the List and from other time information. The additional temporal attributes (Fig-ure 6.9) are the number of time_levels, which is actually a reference to the list's elementsattribute, and the time level indices among those stored that represent the old and new solu-tions, old_time_level and new_time_level. For each stored time level, the data item hasthese attributes: the time interval between the given timestep and the timestep previous toit, time_interval_from_previous; the absolute physical time, absolute_time; the overalltimestep for the level, absolute_level_timestep; and the contribution of each parent timelevel to the injected value of the speci�c time level of the data item, time_contribution.Thus, a data item that contains relative time values has four RealList attributes attachedto it, each of the same length as the data item, which describe the listed time information.152



2 0:0 1:0
time contribution attribute
PPM relative timePPM time levels

�t �tt+ k�t t+ (k + 1)�t227 2280:2 0:8absolute level timestep attributetime interval from previous attributeabsolute time attributeelements attribute
Figure 6.9: Time attributes of a RealList

153



Dimensional parameter types have fewer attributes. The structural attributes of anAxisDescription are axis_loci, which is the number of loci along each axis, and which isan IntegerVector; axis_staggering, the staggering along each axis (that is, cell-centeredor on the nodes); a stencil, which is a variform reference to an IntegerStencil; and aBoolean permanence. An AxisContribution has several structural attributes: the interpo-lation increment, a variform stencil so that its values can cover not only the computationaldomain but also any exterior regions to which it might be applied; the number of axis_loci,and the relationship it applies to (that is, injection or projection). AxisContributiondata items have no permanence attribute, because they are implicitly permanent.The parameter types with the most structural attributes are the spatial parameter types,which have the following: the relative spatial_resolution (that is, the data item can havethe resolution of the level it is on, the immediately coarser level, or the immediately �nerlevel) and the associated refinement_factor; a variform reference stencil_pointer and alocal copy of the the stencil itself, to ensure consistency in the event that the stencil referentchanges after the instance of the data item is created; the axis_set (for example, in threedimensions, all axes, an XY-plane, the XZ-plane, the X-axis, and so on); the staggering; andthe number of loci along each axis, axis_loci. In addition, all spatiotemporal parametertypes have variform time attributes, one of which points to a Level RealList data itemthat contains the relative time values, and the rest of which point to that data item's timeattributes.In addition to these attributes, SurfaceParameterSet and SurfaceVariableSet data154



items have a thickness attribute. If the thickness attribute is empty, for example in thecase of a set of correction vectors, then the thickness of the surfaces is one locus; that is, thesurface is a set of computational planes corresponding to the interface of the grid. Otherwise,each extreme along each axis can have its own thickness, according to the instance of the dataitem that is declared as the thickness attribute. For an example of a SurfaceVariableSetwith non-unitary thickness, consider a case in which a surface is used to store the spatiallyinterpolated values of the boundary region of the grid, to save computation time duringiterations on the grid's level. (This case might arise for an interpolation scheme that is verycomputationally expensive relative to the cost of advancing the solution, for example a higherorder conservative interpolation.) Here, the thickness of the boundary surface would be theghost boundary stencil of the associated solution vector. From these spatially interpolatedvalues, the spatiotemporally interpolated boundary values can be obtained with minimalcomputational overhead, such as would be incurred with linear time-weighted interpolation,which is a very common time interpolation scheme.MaximalParameterSetand MaximalVariableSetdata items have a rank attribute ratherthan a thickness attribute, which indicates the number of dimensions of the maximalsurface; that is, a rank of 1 indicates the longest line, a rank of 2 indicates the plane ofgreatest area, and so on. If the rank is d, then the maximal surface is the space covered bythe grid's nodes.Spatiotemporal parameter types also have attributes expressing their time characteristics.Among these are the temporal_resolution (that is, whether its time information is drawn155



locally, from the parent level or from the child level), and references to the relative_timelist and its associated time attributes.Resolutions are an important property of spatial sets. The spatial resolution of a setindicates whether the set has the resolution of the level that encapsulates it, the resolution ofthe immediately coarser level, or the resolution of the immediately �ner level. The advantageof this approach is that it allows every set that derives its shape from a particular grid to bea data item for that grid. For example, the correction vectors that are ultimately applied toa parent grid have shapes based on its children (Figure 4.14). Thus, the correction vectorsare data items of the child grids, thereby requiring minimal extra information to determinetheir shapes and locations in the domain. But the set of uxes taken from the parent gridare stored in a child-shaped surface with the parent's resolution, while the aggregate uxsums taken from the child grid are also stored in a child-shaped surface, but with the child'sresolution. The operations that combine these uxes can be performed locally on the child,then transferred to the parent when the result is obtained (Figure 6.10).Finally, spatial data types also have attributes that describe the characterics of their setproperties. First, every set has a number of members, each of which has a member_name.Next, every set has a (possibly empty) archetype attribute. The archetype of the set s1 isanother set s2 such that the members of the set s1 are a subset of the members of s2. Finally,every set has a list of member indices that directly map each member of the set to a memberof its archetype. The advantage of this approach is that some sets are used for purposesthat do not necessarily apply to all the members of the set's archetype. As an example,156



PostcorrectionPrecorrection
Figure 6.10: Spatial data items of di�erent resolutionsconsider a selection criterion that concerns itself only with a subset of the variables. In thiscase, the selection SpaceParameterSet data item should have vectors only corresponding tothe variables from which grid points are selected, to minimize memory consumption (Figure6.11).As for method parameter types, they are very limited in their structural attributes; infact, Methods have none. SetMethods have an one structural attribute, the set archetype,which maps the members of the SetMethod to the members of its spatial set archetype, inprecisely the same manner as for set archetype relationships between spatial sets.6.1.3.2 Functional AttributesIn addition to structural attributes, all data types have functional attributes as well.Structured types have an initialization method attribute initialize, a �nalization157



newold voldnewoldnewoldnewu e �SpacetimeVariableSet �eSpaceParameterSetsolution solution selection
SpacetimeVariableSet solution: ...Member density, Member energy,Member u-velocity, Member v-velocity, Member w-velocity;SpaceParameterSet solution selection: ...Archetype solution, Member density, Member energy;Figure 6.11: Set archetypemethod attribute finalize, and a list of initial values. (Typically, a structured data itemwill have either an initialization method or a set of initial values, but in principle nothingprohibits it from having both.) When an instance of a structured data item is created, itsinitialization sequence �rst determines whether it has any initial values, and if so assignsthem, and then checks whether it has an initialization method, and if so executes it. If thereare initial values, then a cascade of choices determines which values are assigned to whichelements:� If there are at least as many initial values as components of the type being initialized,then the initial values are simply copied into the components, up to the number ofcomponents.� If there is only one initial value, it is assigned to all the components.158



� If the element type is an extreme type, and there are two initial values, then they areassigned respectively to every pair of extrema in every element.� If the element type is a dimensional type, and there are no more initial values than axes,then each initial value is assigned to the component corresponding to the associatedaxis, with the last initial value being propagated to further axes if necessary.� If the element type is an extreme type, and there are no more initial values thantwice the number of axes, then each initial value is assigned to the component corre-sponding to the associated axis, with the last initial value being propagated to furthercomponents if necessary.� Otherwise, the initial values are assigned to the �rst set of elements, and then the lastfew initial values are assigned to the rest of the components, according to the otherrules.Of course, the latter rules can be circumvented by providing su�cient values to cover allcomponents, and thus employing only the �rst rule.Like structured parameter types, dimensional parameter types also have attributes forinitialization and �nalization methods, and these attributes apply in precisely the same wayas for structured parameter types.Spatial types have several di�erent functional attributes, referring to data as well asmethods. In addition to methods for initialization and �nalization, the methods of a spatialdata item are inject, project, extrapolate, correct, select, input, and output. (To159



promote disambiguity, method functional attributes take on the verb form of the operationname.) These methods are typically called from within a module, and they operate on theparticular data item. For example, the inject attribute of a SpacetimeVariableSet appliesa speci�c injection method from a parent's instance of the data item to a child's instance,over a speci�ed computational region on each.Spatial types also have several functional data references:� collection, which contains the ghost boundary values collected from the parent,and can either be the raw parental values at the parents' resolution, or the spatiallyinterpolated values at the local resolution;� extrapolation, which contains the values on the exterior of the computational do-main, for example in a case where those values are time-independent but expensive tocalculate;� precorrection, which contains the ux values obtained by a grid's parents, at theparents' resolution, which will later be compared to the aggregate ux values of thegrid itself;� postcorrection, the aggregate ux values of the grid;� selection, the ags for re�nement on each variable from which re�nement regions areselected.(To promote disambiguity, data functional attributes take the noun form of the name of the160



operation.)As for method parameter types, their attributes describe the set of potential functionvalues that they can take on: the number of potential_values; a list containing a functionpointer corresponding to each potential_value; and the current value index. In the caseof a SetMethod, the number of potential_values is an IntegerList, with one entry permember, and the structure containing every potential_value entry is an array of functionpointers. In the case of a Method, the respective attributes are an Integer and a listof function pointers. In addition, Method data items have a data_method_value_indexand SetMethod data items have a set_method_value_index; the former is a single indexindicating which of the potential function pointer values has been assigned to the data item,and the latter is a list of such indices, one for each member of the set.6.2 The HAMR Function LibraryThe HAMR function library comprises the functionality required for the many data typesused by grid hierarchies in Berger's adaptive mesh re�nement strategy. The library has aset of subroutines that operate on each category of parameter type. Each library function isdesigned in a manner that promotes generality, by decoupling the speci�cs of the size andshape of the data item(s) on which it operates from the operation itself; typically, this designgoal is achieved by providing support for as many cases as possible | including, for example,support for each possible rank of a spatial type, and separate cases for operand aliasing.161



6.2.1 Structured Library FunctionsThe HAMR function library provides several categories of operations on structured types:� memory management;� assignments;� reductions;� comparisons;� unary operations;� binary operations.6.2.1.1 Memory ManagementAssociated with every data type, are memorymanagement functions that perform allocationand deallocation of instances of the data type. Speci�cally, for each element type, there arecorresponding memory management operations over all the structured parameter types. Ifthe element type is a scalar, then the most primitive operation is the allocation of a list ofthat element type. However, if the type is non-scalar, then the most primitive operationis the allocation of a single instance of the type, and there is also associated an operationthat allocates a framework for a list of the element type. In the case of Strings, for ex-ample, there is a function String_allocate that allocates space for a single String, anda function StringList_framework_allocate that allocates space for the list of pointers162



ElementTypeList ElementTypeList_framework_allocate (Integer elements){ ElementTypeList elementtypelist; Integer e;elementtypelist = memory_allocate(sizeof(ElementType) * elements);for (e = 0; e < elements; e++) elementtypelist[e] = NULL;return elementtypelist; }Figure 6.12: Framework allocationto Strings. The other non-scalar element types are designed similarly; for example, anIntegerStencilList is actually a list of pointers to IntegerStencils.Thus, every allocation | except of a list of scalars or of a single instance of a non-scalarelement type | is actually an allocation of a framework. After each framework is allocated,its entries are set to the null pointer as a matter of course (Figure 6.12), because in somecases only the framework itself is required, with the entries to be �lled in later.However, in most cases a framework is allocated because it is required as part of a full dataitem. In such a case, the allocation function allocates an appropriate framework, allocatesthe next most complex structured type, then assigns to the elements of the former pointers tothe elements of the latter (Figure 6.13). The advantage of this approach is that it maximizescode reuse, since each level of complexity adds only a small amount of coding, which is builton top of the functions for less complex types.String structured types are an exception to this pattern. In this case, the allocatedstructures do not contain any actual String values; rather, since the length of an instance ofa String is rarely known beforehand, the structure is simply a framework of the appropriatecomplexity, and the instances are inserted on the y.163



ElementTypeArrayBox ElementTypeArrayBox_allocate (Integer lists, Integer elements_per_list, Integer axes){ ElementTypeArrayBox elementtypearraybox; Integer l;elementtypearraybox = ElementTypeArray_framework_allocate(lists);*elementtypearraybox = ElementList_allocate(lists * elements_per_list);if (elements > 1)for (l = 1; l < elements; l++)elementtypearraybox[l] =&(elementtypearraybox[0][l * elements_per_list]);return elementtypearraybox; }Figure 6.13: ArrayBox allocationElementTypeArrayBox ElementTypeArrayBox_free (ElementTypeArrayBox elementtypearraybox,Integer lists, Integer elements_per_list, Integer axes){ ElementTypeList_free(*elementtypearraybox, lists * elements_per_list);ElementTypeArrayBox_framework_free(elementtypearraybox, lists);return NULL; } Figure 6.14: DeallocationDeallocation is even simpler than allocation, because the values of the elements andpointers are not of concern. Thus, deallocation requires only a recursive deallocation of thenext most complex structured type, and then deallocation of the most complex framework(Figure 6.14).Every allocation and deallocation is logged, both by the memory management routinesof the type category, and by the generic memory management routines on which they arebased. As a result, memory use statistics can be easily collated and reported.164



6.2.1.2 AssignmentsThe simplest operations on a structured type are assignments, which operate on a singleinstance of the type.Among the assignment operations is the assignment of a constant to all elements of astructure, or to some subset of the elements. This constant can be a scalar, or in the caseof dimensional and extreme element types, a single instance of the element type. In fact,with such element types, several di�erent assignments are provided: assigning a scalar toevery component of every element, assigning a scalar to a speci�c individual componentof every element, and, as mentioned, assigning an instance of the element type to everyelement. Because of the contiguous nature of the structured types, many operations onmore complex types are simply calls to the same operations on less complex types, withappropriate dereferencing (Figure 6.15).In addition to generic assignments, HAMR also provides assignments of speci�c, com-monly used values, including zero, one, an unde�ned value (for example, to clear a structureof indices, which indicates that certain indices have not yet been assigned), true and falsevalues for boolean structures, and so on. These functions are provided as a programmingconvenience, and are implemented by calls to more generic assignments with the appropriateconstant argument.6.2.1.3 ReductionsReductions are operations that derive a single value from multiple elements. Among the165



Void ElementTypeArrayListBox_set_to_constant (ElementTypeArrayListBox elementtypearraylistbox,Integer arrays, Integer lists_per_array, Integer elements_per_list,ElementType constant){ ElementTypeArrayBox_set_to_constant(*elementtypearraylistbox,arrays * lists_per_array, elements_per_list); }Void ElementTypeArrayBox_set_to_constant (ElementTypeArrayBox elementtypearraybox,Integer lists, Integer elements_per_list, ElementType constant){ ElementTypeList_set_to_constant(*elementtypearraybox,lists * elements_per_list); }Void ElementTypeList_set_to_constant (ElementTypeList elementtypelist,Integer elements, ElementType constant){ Integer e;for (e = 0; e < elements; e++) elementtypelist[e] = constant; }Figure 6.15: Assignment to a complex structured typereduction operations HAMR provides are aggregates, instance examinations and extremaexaminations.An aggregate reduction is one that performs an arithmetic operation on the elements ofa structure, in order to produce a single value. HAMR provides sum, product and mean ag-gregates (Figure 6.16); the �rst two are direct calculations, while the last is accomplished byperforming a sum and then dividing the result by the number of elements. The sum opera-tion also plays an important role with respect to operations on non-Box Arrays, ArrayListsand ArrayArrays: such operations require the sum of the number of items in the next-to-outermost index, in order to determine the length of the outermost dimension of the nextmost complex structured type, which is required by the recursive call to the associated166



ElementType ElementTypeList_sum (ElementTypeList elementtypelist,Integer elements){ ElementType sum; Integer e;for (e = 0; e < elements; e++) sum += elementtypelist[e];return sum; }ElementType ElementTypeList_product (ElementTypeList elementtypelist,Integer elements){ ElementType product; Integer e;for (e = 0; e < elements; e++) product *= elementtypelist[e];return product; }ElementType ElementTypeList_mean (ElementTypeList elementtypelist,Integer elements){ return ElementTypeList_sum(elementtypelist, elements) / elements; }Figure 6.16: Aggregate operationsfunction on that type (Figure 6.17).Next, an instance examination is an operation that searches for instances of a value andperforms some operation with respect to the instances. The instance operations HAMRprovides are� identi�cation of the �rst instance of the value in a structure;� identi�cation of the last instance of the value in a structure;� counting the number of instances of the value;� determining whether the structure contains any instances of the value.The last of these operations is implemented by determining the �rst instance of the value: ifthe result of that operation is unde�ned, then the structure does not contain the value. (In167



ElementType ElementTypeArray_operation (ElementTypeArray elementtypearray,Integer lists, IntegerList elements){ ElementTypeList_operation(*elementtypearray,IntegerList_sum(elements, lists));}ElementType ElementTypeArrayList_operation (ElementTypeArrayList elementtypearraylist,Integer arrays, IntegerList lists, IntegerArray elements){ ElementTypeArray_operation(*elementtypearraylist,IntegerList_sum(lists, arrays), *elements);}ElementType ElementTypeArrayArray_operation (ElementTypeArrayArray elementtypearrayarray,Integer arraylists, IntegerList arrays,IntegerArray lists, IntegerArrayList elements){ ElementTypeArrayList_operation(*elementtypearrayarray,IntegerList_sum(arrays, arraylists), *lists, *elements);} Figure 6.17: Operations on non-Box array structures
168



principle, this operation could also be implemented by counting the number of instances ofthe value, and then determining whether that count is nonzero, and typically the count ofthe instances optimizes signi�cantly better than the search for the �rst instance. However,the counting operation does not short circuit when an instance is found, and the advantageof optimization is unlikely to outweigh the advantage of short circuiting when examining astructure with a large number of elements.)Finally, an extreme examination is like an instance examination, except that the value itexamines is an extreme| that is, either the minimumor the maximumvalue of the structure.The extreme operations in HAMR, each of which is available for both the minimum and themaximum, are:� determination of the value of the extreme;� identi�cation of the �rst instance of the extreme in a structure;� identi�cation of the last instance of the extreme in a structure;� counting the number of instances of the extreme.6.2.1.4 ComparisonsHAMR provides the standard comparisons | equal, not equal, less, less or equal, greater,greater or equal | both between the elements of two structures of the same shape, andbetween a structure's elements and a constant. Every comparison operation has a boolean169



Void ElementTypeList_equal (BooleanList dstbooleanlist,ElementTypeList srcelementtypelist1,ElementTypeList srcelementtypelist2, Integer elements){ Integer e;if (srcelementtypelist1 == srcelementtypelist2)BooleanList_set(dstbooleanlist, elements);elsefor (e = 0; e < elements; e++)dstbooleanlist[e] =srcelementtypelist1[e] == srcelementtypelist2[e];} Figure 6.18: Comparison operand overlap cases�eld as its destination operand; that is, the values on the source operands are mapped toags on the destination operand.Comparison operations (and other operations that have multiple structured operands)employ multiple versions of the operation, with each version covering a di�erent case ofoperand overlap. This approach maximizes the potential for optimization, because it allowsthe compiler to assume legitimately that, within each loop, each individual operand refers toa distinct area of memory. In the case of comparisons between two structured operands, thetwo cases are that the operands are actually the same structure and that they are di�erentstructures (Figure 6.18), except in the case of boolean comparisons, in which case it maybe the case that one or both of the source operands overlap the destination operand. (Inpractice, this rule only applies to operations on Lists, because operations on more complexstructured types are implemented by recursively calling operations on less structured types.)170



Void ElementTypeList_negate (ElementTypeList dstelementtypelist,ElementTypeList srcelementtypelist, Integer elements){ Integer e;if (dstelementtypelist == srcelementtypelist)for (e = 0; e < elements; e++)dstelementtypelist[e] = -dstelementtypelist[e];elsefor (e = 0; e < elements; e++)dstelementtypelist[e] = -srcelementtypelist[e]; }Figure 6.19: Unary negation6.2.1.5 Unary OperationsUnary operations require one source operand and one destination operand. HAMR's unaryoperations include copying, absolute value, negation, square root, exponential, and theboolean not operation. A typical unary operation has two cases, one in which the operandsare the same structure, and one in which they are di�erent (Figure 6.19). Technically, thesource operand of a unary operation could be a constant, instead of a structured operand.However, such operations are classi�ed as assignments, and are treated separately.6.2.1.6 Binary OperationsBinary operations require two source operands and one destination operand. HAMR's binaryoperations are the standard arithmetic operations | addition, subtraction, multiplication,division and remainder | as well as the boolean operations and, (inclusive) or and exclusiveor. A typical binary operation has �ve cases that address the various combinations of171



Void ElementTypeList_add (ElementTypeList dstelementtypelist,ElementTypeList srcelementtypelist1,ElementTypeList srcelementtypelist2, Integer elements){ Integer e;if (srcelementtypelist1 == srcelementtypelist2)if (dstelementtypelist == srcelementtypelist1)for (e = 0; e < elements; e++) dstelementtypelist[e] *= 2;else for (e = 0; e < elements; e++)dstelementtypelist[e] = srcelementtypelist1[e] * 2;else if (dstelementtypelist == srcelementtypelist1)for (e = 0; e < elements; e++)dstelementtypelist[e] += srcelementtypelist2[e];else if (dstelementtypelist == srcelementtypelist2)for (e = 0; e < elements; e++)dstelementtypelist[e] += srcelementtypelist1[e];else for (e = 0; e < elements; e++)dstelementtypelist[e] =srcelementtypelist1[e] + srcelementtypelist2[e]; }Figure 6.20: Typical binary operationoverlapping operands (Figure 6.20).5In addition to binary operations on two structured source operands, HAMR also includessuch operations for cases in which one operand is a constant (Figure 6.21), with a singlefunction for each commutative operation | i.e., addition, multiplication, and the booleanbinary operations and, inclusive or and exclusive or | and two functions for each non-commutative operation | i.e., subtraction, division and remainder | one for each orderingof the operands. For example, the two subtraction operations are subtract_constant and5More formally, for k structured operands including the destination, there are 2k � k cases, becausePki=1�ki� � 2k [Tuc84], and the concept of a single operand overlapping itself is meaningless, whicheliminates �k1� � k cases. 172



Void ElementTypeList_add_constant (ElementTypeList dstelementtypelist,ElementTypeList srcelementtypelist, Integer elements,ElementType constant){ Integer e;if (constant == 0)ElementTypeList_copy(dstelementtypelist,srcelementtypelist,elements);else if (dstelementtypelist == srcelementtypelist)for (e = 0; e < elements; e++) dstelementtypelist[e] += constant;else for (e = 0; e < elements; e++)dstelementtypelist[e] = srcelementtypelist[e] + constant; }Figure 6.21: Typical binary operation with constant operandsubtract_from_constant, with a structured minuend for the former and a structured sub-trahend for the latter.Most binary operations with a constant operand also treat special cases based on thevalue of the constant. For example, the function for adding a constant to a structured dataitem includes special treatment of the case in which the constant is zero; speci�cally, theaddition reduces to a copy, as does subtraction of zero, multiplication by one and division byone. Subtraction from zero reduces to negation, and remainder by one reduces to assignmentof zero.6.2.2 Dimensional Library FunctionsFor each dimensional parameter type, the HAMR function library provides appropriate func-tionality. For AxisDescriptions, HAMR provides the same functions as for structuredtypes: the AxisDescriptions are implemented as Arrays of the same element type, and173



Void ElementTypeAxisDescription_set_to_constant (ElementTypeAxisDescription elementtypeaxisdescription,AxisStaggering axisstaggering, IntegerVector axisloci,Integer axes, ElementType constant){ ElementTypeArray_set_to_constant(elementtypeaxisdescription,axes, axisloci, constant); }Figure 6.22: Typical AxisDescription operationso the AxisDescription functions are implemented as calls to the corresponding Arrayfunctions (Figure 6.22).As for AxisContributions, they require very di�erent operations, because of theirunique purpose. Aside from allocation, deallocation and copying, the other functions onAxisContributions are initializers for various combinations of mesh type and coordinatesystem.6.2.3 Method Library FunctionsHAMR provides limited functionality for method types, because most of the operations avail-able for other types are inappropriate for methods. Speci�cally, HAMR provides allocation,deallocation, copying and assigning a constant (i.e., a function pointer value). In fact, whena MethodList or SetMethodList is allocated, its entries are automatically initialized to anempty function that returns a neutral value of the appropriate element type (or no value).For example, the entries of a newly allocated VoidMethodList are all assigned a pointer tothe function Void_do_nothing, which takes no arguments and has an empty function body.174



This preassignment of the neutral function guarantees that executing the function pointerwill not abort the run.6.2.4 Spatial Library FunctionsThe HAMR function library provides the same categories of operations for spatial typesas for structured types, with one additional category, interpolation. Spatial functions areintended to be maximally self-contained, in the sense that each function addresses as manycases as possible. For example, each function treats one-, two- and three-dimensional caseswith equal ease. More generally, a spatial function:� determines whether the spatial operands are linearly independent, and if not | forexample, if the lengths of all the spatial operands are one locus along some axis or axes| then reduces the formal arguments to the true rank of the operands and calls thefunction recursively;� determines whether any special case | that is, a case whose calculation is simpler thanthe general case | is applicable, and if so applies that case, often by calling another,simpler library function;� otherwise, performs the operation, choosing the case that corresponds to the combina-tion of spatial operands that overlap, if any.Spatial functions come in several categories of operational complexity:175



Contiguous O�set Striding Marginal Incremental Injection ProjectionAssignment p p pReduction p p p p p pComparison p p p pUnary p p p pBinary p p p pInterpolation p p p pTable 6.5: Function complexities of operation categories� contiguous;� o�set;� striding;� marginal;� incremental;� injection;� projection.Most of the operation categories are relevant to only a subset of the complexity categories(Table 6.5).6.2.4.1 Contiguous OperationsContiguous operations are those that treat an entire spatial operand, or treat entire multipleoperands of identical shape; they are implemented by calling the corresponding function fora List of that element type. For example, if two operands de�ned over the computational176



interior of a grid are to be added, with the sum placed in a third operand of identical shape,then the operation can be performed contiguously (Figure 6.23).6.2.4.2 O�set OperationsO�set operations are those that operate over a subregion of a spatial operand, or morecommonly over di�erent subregions of multiple operands (Figure 6.24). A common use ofan o�set operation is to perform the operation over a bounded operand, but only on thecomputational interior; for example, to divide the interior of one operand by the interiorof another, as would be the case in obtaining velocity from momentum and density. Insuch a case, it can be crucial to avoid dividing the boundary as well, since the denominatoroperand may be known to have nonzero interior values, but there may be no such certaintyabout the boundary, for example if the boundary values have not been collected recently.Similarly, cases often arise in which the operation should be performed on the boundariesbut not the interior, or on the boundary of one grid and the interior of another | as in thecase of copying boundary values from a sibling (Figure 6.25). Indeed, o�set operations areprobably the most commonly used in HAMR, because they provide maximum generality foroperations on a single level of resolution.O�set operations take three structural arguments for each operand: staggering, numberof loci along each axis, and starting index. In addition, such operations take a single lengthvector, which describes the number of loci along each axis on which to perform the operation,for all of the operand regions. This arrangement guarantees that the regions are of identical177



+
++=
+

Void ElementTypeField_contiguous_add (ElementTypeField dstelementtypefield,ElementTypeField srcelementtypefield1,ElementTypeField srcelementtypefield2,AxisSet axisset, Staggering staggering,IntegerVector axisloci, Integer axes){ ElementTypeList_add(dstelementtypefield,srcelementtypefield1, srcelementtypefield2,ElementTypeField_number_of_loci(axisset, staggering, axisloci, axes)); }Figure 6.23: Contiguous addition178



src1

src2

dst

+=
Figure 6.24: O�set addition

Figure 6.25: O�set copy from sibling to boundary179



shape, regardless of the shapes of the operands themselves.All o�set operations except interpolation must treat two special cases. First, if the o�setscover the entire corresponding spatial operands, and the operands are of identical shape, thenquite naturally the contiguous version of the operation is called. Second, if the rank of theoperands is 1, then the contiguous operation can be called on the subregions indicated bythe o�set arguments.If neither of the special cases apply, then the operation is performed directly. Thus, eacho�set function has, for each rank up to some maximum rank6 that is de�ned at compile time,a set of nested loops, one for each axis (Figure 6.26).6.2.4.3 Striding OperationsStriding operations perform over subregions of the input operands, in the same manneras o�set operations, but perform the operation on only some of the loci within the subre-gions. Speci�cally, each operand has not only o�set arguments but also a stride argument,an IntegerVector that dictates which loci will be operated on; those loci are a �xed dis-tance apart along each axis, with the distance indicated by the corresponding stride vectorcomponent.A common example of a striding operation is the use of a striding copy to obtain exteriorboundary conditions on a reecting boundary. Speci�cally, the cells closest to the exteriorboundary are copied into the ghost region using a stride of -1 along the axis corresponding6Currently, the maximum rank can be has high as six.180



Void RealField_offset_set_to_constant (RealField realfield,AxisSet axisset, Staggering staggering,IntegerVector axis_loci, IntegerVector size, IndexPoint start,Integer axes, Real constant){ ...if (axes == 1) {RealField_contiguous_set_to_constant(&realfield[*start],axisset, Staggering_cell_center(axes), size, axes, constant);return; }switch (axes) {case 2:start1 = start[0]; size1 = size[0]; al1 = axis_loci[0];start2 = start[1]; size2 = size[1];for (a2 = 0; a2 < size2; a2++)for (a1 = 0; a1 < size1; a1++)realfield[a1+start1 + al1*(a2+start2)] = constant;break;case 3:start1 = start[0]; size1 = size[0]; al1 = axis_loci[0];start2 = start[1]; size2 = size[1]; al2 = axis_loci[1];start3 = start[2]; size3 = size[2];for (a3 = 0; a3 < size3; a3++)for (a2 = 0; a2 < size2; a2++)for (a1 = 0; a1 < size1; a1++)realfield[a1+start1 + al1*(a2+start2) + al1*al2*(a3+start3)] =constant;break;}} Figure 6.26: Nested loops in an o�set operation181



to that boundary, with a stride of 1 along all other axes (Figure 6.27).Striding operations must treat one special case, the case in which all stride vectors havevalue 1 for all components. In this case, the operation reduces to the associated o�setoperation. Otherwise, the appropriate nested loop is employed.An important point regarding special cases is that they can be pseudo-recursively de�ned.In the case described above, in which all strides are 1, the call to the associated o�setoperation may determine that the operation is to be performed over the entirety of operandsof identical size and shape. In this case, the o�set operation would itself call a special case,namely the contiguous operation, which would in turn call the associated operation on aList.6.2.4.4 Marginal OperationsMarginal operations reduce a full d-dimensional spatial operand to a (d � k)-dimensionaloperand, based on the axis set of the destination operand. Necessarily, therefore, all marginaloperations are reductions. A common example of a marginal operation is obtaining the countof the instances of selection ags that are set along a particular slice plane (Figure 6.28),an operation that plays a critical role in clustering, since this operation determines thesignatures.Marginal operations take one set of o�set arguments, rather than one for each operand,but take an axis set for each operand, since the axis set describes the polytope (e.g., line,plane) that the operand represents. Speci�cally, the destination axis set must be a (not182



Void RealField_striding_copy (RealField dstrealfield, RealField srcrealfield,AxisSet axisset, Staggering dststaggering, Staggering srcstaggering,IntegerVector dstaxisloci, IntegerVector srcaxisloci,IntegerVector size, IndexPoint dststart, IndexPoint srcstart,IntegerVector dststride, IntegerVector srcstride, Integer axes){ ...switch (axes) { ...case 2:dstart1 = dststart[0]; sstart1 = srcstart[0]; size1 = size[0];dstride1 = dststride[0]; sstride1 = srcstride[0];dal1 = dstaxisloci[0]; sal1 = srcaxisloci[0];dstart2 = dststart[1]; sstart2 = srcstart[1]; size2 = size[1];dstride2 = dststride[1]; sstride2 = srcstride[1];for (a2 = 0; a2 < size2; a2++)for (a1 = 0; a1 < size1; a1++)dstrealfield[a1*dstride1+dstart1 + dal1*(a2*dstride2+dstart2)] =srcrealfield[a1*sstride1+sstart1 + sal1*(a2*sstride2+sstart2)];break; ...} } Figure 6.27: Striding copy183



1444420 2 3 3 2 1 0 4 4Void BooleanField_marginal_instances_of_true (IntegerField dstintegerfield, BooleanField srcbooleanfield,AxisSet dstaxisset, AxisSet srcaxisset, Staggering staggering,IntegerVector axisloci, IntegerVector size, IndexPoint start,Integer axes){ ...switch (axes) {case 2:start1 = start[0]; size1 = size[0]; al1 = axisloci[0];start2 = start[1]; size2 = size[1];switch (dstaxisset) {case 01b:for (a2 = 0; a2 < size2; a2++)for (a1 = 0; a1 < size1; a1++)if (srcbooleanfield[a1+start1 + al1*(a2+start2)])dstintegerfield[a1+start1]++;break;case 10b:for (a2 = 0; a2 < size2; a2++)for (a1 = 0; a1 < size1; a1++)if (srcbooleanfield[a1+start1 + al1*(a2+start2)])dstintegerfield[a2+start2]++;break;}break; ...} } Figure 6.28: Marginal instances of true184



necessarily proper) subset of the source axis set. Thus, the destination operand has theshape of an appropriate subsurface of the source operand.The special cases that marginal operations address separately from the general case arethe cases of an empty destination axis set, which indicates a full reduction of the region ofinterest to a single scalar, and the case of identical source and destination axis sets, whichindicates that the operation does not reduce, but rather simply examines the value at eachlocus. For example, in the case of the marginal count of the number of instances of booleanags that are set, the empty axis set case would count the total number of ags that are set,and the complete axis set case would assign a 1 for every ag that is set and a zero for everyag that is clear.6.2.4.5 Incremental OperationsLike their marginal counterparts, incremental operations are also all reductions; speci�cally,they reduce the loci surrounding a locus to a value on the locus. A common example ofan incremental operation is an examination of a �eld of boolean ags to determine whetherany of the surrounding ags (including the ag that is surrounded) are set (Figure 6.29).This operation is employed during selection, to expand the selected region by the size of thebu�er region and any child boundaries needed.Like marginal operations, incremental operations take one set of o�set arguments, ratherthan one for each operand, so all operands have identical shape. They also take an incrementargument, which describes the neighborhood surrounding each locus.185



! Incremental Stencilsrc dst
Void BooleanField_incremental_any_true (BooleanField dstbooleanfield, BooleanField srcbooleanfield,AxisSet axisset, Staggering staggering,IntegerVector axisloci, IntegerVector size, IndexPoint start,IntegerStencil increment, Integer axes){ ...switch (axes) {...case 2:incmin1 = increment[0][0]; incmax1 = increment[0][1];al1 = axisloci[0]; size1 = size[0]; start1 = start[0];incmin2 = increment[1][0]; incmax2 = increment[1][1];al2 = axisloci[1]; size2 = size[1]; start2 = start[1];for (i2 = incmin2; i2 <= incmax2; i2++)for (i1 = incmin1; i1 <= incmax1; i1++)BooleanField_offset_or(dstbooleanfield, dstbooleanfield, srcbooleanfield,axisset, staggering, staggering, staggering,axisloci, axisloci, axisloci,incsize, incdststart, incdststart, incstart, axes);break; ...}} Figure 6.29: Incremental check of whether any surrounding ags are true186



for (i1 = incmin1,incdststart[0] = (((start1+incmin1) < 0) ? 0 : start1+incmin1),incstart[0] =(((start1+incmin1) < 0) ? start1-incmin1 : start1),incsize[0] =(((start1+incmin1) < 0) ? size1+start1+incmin1 :((size1+start1+incmin1) > al1) ?size1-(start1+incmin1) : size1);i1 <= incmax1; i1++,incdststart[0] = (((start1+i1) < 0) ? 0 : (start1+i1)),incstart[0] = (((start1+i1) < 0) ? (start1-i1) : start1),incsize[0] =(((start1+i1) < 0) ? (size1+start1+i1) :((size1+start1+i1) > al1) ? size1-(start1+i1) : size1))Figure 6.30: Incremental loop with coverage guaranteesThe special case that incremental operations address separately from the general caseis the case of an increment whose entries are all zero. In this case, the operation reducesto the same simple operation as the identical axis sets case of the corresponding marginaloperation.Regarding the incremental loops: in fact, they are considerably more complicated thandepicted in Figure 6.29. The complication arises because the increment may actually leako� the edge of the operand, in which case the operation would draw its source values fromrandom memory addresses. To combat this problem, checks and adjustments are incorpo-rated into the loop declaration (Figure 6.30). Essentially, these checks guarantee that theincremental region begins and ends inside the operand, and that the incremental size isappropriately adjusted if the incremental region must be truncated on either side.187



src dst!
Figure 6.31: Injection interpolation6.2.4.6 Injection OperationsInjection operations obtain a �ner result from coarser input. A common example of an injec-tion operation is interpolation from a coarse to a �ne grid (Figure 6.31). Injection operationstake a set of o�set arguments for each operand, as well as a re�nement factor, and an originpoint for each grid. The origins are employed to determine which coarse cell corresponds toeach �ne cell, though this issue typically arises only in the case of interpolations.The special case that injection operations address separately from the general case is thecase of a re�nement factor whose entries are all one. In this case, the corresponding o�setoperation is applied. 188



Unary and interpolation injection operations have a single form, which corresponds to acoarse source operand and a �ne destination operand. Binary injection operations, on theother hand, come in three forms, depending on which of the source operands is coarse: the�rst source operand, the second, or both. For example, consider the standard correctionalgorithm. During correction, the postcorrection operand, which has the �ner resolution, issubtracted from the coarser precorrection operand, and the result goes into the postcorrectionoperand (Figure 6.32).6.2.4.7 Projection OperationsProjection operations transfer information from �ner to coarser operands, typically by re-duction of the values on the �ne loci that overlay a coarse locus. A common example ofa projection operation is the determination of whether any of the ags in a set of �ne lociare set, and mapping the result to the associated coarse locus (depicted in Figure 6.33, withcode fragment in Figure 6.34), such as would be used in projecting the selection ags of a�ne grid onto its coarser parent.Projection operations take a set of o�set arguments for each operand, except for thestaggering, which is the same for all. The staggering determines which axes to reduce along;speci�cally, reduction only occurs along axes that are centered, rather than on the meshlines.The special case that projection operations addresses separately from the general case isthe case of a re�nement factor whose components are all one, in which case the operation189



Void RealField_injection_from_first_subtract (RealField dstrealfield,RealField srcrealfield1, RealField srcrealfield2,AxisSet axisset,Staggering dststaggering,Staggering srcstaggering1, Staggering srcstaggering2,IntegerVector dstaxisloci,IntegerVector srcaxisloci1, IntegerVector srcaxisloci2,IntegerVector size,IndexPoint dststart,IndexPoint srcstart1, IndexPoint srcstart2,IndexPoint dstorigin,IndexPoint srcorigin1, IndexPoint srcorigin2,IntegerVector refinement_factor, Integer axes){ ...switch (axes) {...case 2:dstart1 = dststart[0]; s1start1 = srcstart1[0];dorigin1 = dstorigin[0]; s1origin1 = srcorigin1[0];size1 = size[0]; ref1 = refinement_factor[0];dal1 = dstaxisloci[0]; s1al1 = srcaxisloci1[0];dstart2 = dststart[1]; s1start2 = srcstart1[1];dorigin2 = dstorigin[1]; s1origin2 = srcorigin1[1];size2 = size[1]; ref2 = refinement_factor[1];for (a2 = 0; a2 < size2; a2++)for (a1 = 0; a1 < size1; a1++)dstrealfield[a1+dstart1 + dal1*(a2+dstart2)] =srcrealfield1[a1/ref1+s1start1 + s1al1*(a2/ref2+s1start2)] -dstrealfield[a1+dstart1 + dal1*(a2+dstart2)];break;...}} Figure 6.32: Injection subtraction with coarse minuend190



!src dst
Figure 6.33: Projection any trueis reduced to a related o�set operation; for example, the projection \any true" operation issimpli�ed to an o�set copy, because it projects only a single \�ne" boolean onto the coarseboolean.6.2.5 SummaryThe HAMR function library is large and extensive, covering a great many cases for eachoperation. While a typical application may utilize many of the functions in the library, theoverwhelming majority go unused. However, predicting the speci�c computational needs ofa particular application a priori can be di�cult, so the design decision that most obviouslyaddresses the wide range of potential requirements incorporates as many combinations ofcircumstances as possible. As a result, the design and implementation of the library required191



Void BooleanField_projection_any_true (BooleanField dstbooleanfield, BooleanField srcbooleanfield,AxisSet axisset, Staggering staggering,IntegerVector dstaxisloci, IntegerVector srcaxisloci,IntegerVector size, IndexPoint dststart, IndexPoint srcstart,IndexPoint dstorigin, IndexPoint srcorigin,IntegerVector refinement_factor, Integer axes){ ...switch (axes) {...case 2:dstart1 = dststart[0]; sstart1 = srcstart[0];dorigin1 = dstorigin[0]; sorigin1 = srcorigin[0];size1 = size[0]; ref1 = refinement_factor[0];reflen1 = Staggering_axis_offset_from_center(staggering,0,axes) ?ref1 : 1;dal1 = dstaxisloci[0]; sal1 = srcaxisloci[0];dstart2 = dststart[1]; sstart2 = srcstart[1];dorigin2 = dstorigin[1]; sorigin2 = srcorigin[1];size2 = size[1]; ref2 = refinement_factor[1];reflen2 = Staggering_axis_offset_from_center(staggering,1,axes) ?ref2 : 1;for (r2 = 0; r2 < reflen2; r2++)for (r1 = 0; r1 < reflen1; r1++)for (a2 = 0; a2 < size2; a2++)for (a1 = 0; a1 < size1; a1++)dstbooleanfield[a1+dstart1 + dal1*(a2+dstart2)] =dstbooleanfield[a1+dstart1 + dal1*(a2+dstart2)] ||srcbooleanfield[a1*ref1+sstart1+r1 + sal1*(a2*ref2+sstart2+r2)];...}} Figure 6.34: Projection any true code192



more than a year of programming and testing e�ort, an e�ort which, at the time, yielded notangible results, since the library itself had relatively little value outside the context of anAMR system.However, this task proved well-chosen. Not only did the exibility of the library easethe programming burden of the rest of the system, it also simpli�ed extending the librarywhen unanticipated needs arose. For example, the need for striding operations was notclear until implementation of the AMR algorithms. At that time, however, the intrinsicproperties of the library's design considerably simpli�ed the process of incorporating thestriding operations, which included all operation categories. Thus this new set of operationswas designed, implemented and tested in a single week.Ultimately, however, the primary advantage of this library design paradigm is in eachfunction's encapsulation of a wide range of potential circumstances. This approach simpli�esthe construction of general-purpose algorithms, and thus is ideal for a system like HAMR.6.3 HAMR Autonomous Grid Hierarchy ManagementHAMR provides autonomous data management by the means described in Chapter 5, withsu�cient functionality to create, copy and delete data structures, and to execute methods onthe structures. While the description of the data management paradigm in Chapter 5 was topdown, progressing from the gross structure of the data to the �ner details, this description willbe bottom up, beginning with the declaration that the application scientist writes, the parser193



which converts the user-generated declaration to machine-readable form, the declaration datastructure, the speci�cation, the HAMR data structure, data item macros, and prede�neddata items.6.3.1 HAMR DeclarationTo implement the declaration concepts described in Section 5.4, HAMR provides a simpledeclaration language, and a parser to convert the information into a form accessible by thespeci�cation. The overall declaration is composed of a set of module declarations, each ofwhich declares the attributes of the module, as well as all of the data items associated withthe module.The declaration language itself is arbitrary; that is, its approach to syntax is one of manypossibilities. In this case, the syntax is a combination of C and Pascal conventions. However,what matters in this case is not the particulars of the syntax, but rather the data, methodsand relationships the declaration language can express.6.3.1.1 Module Header DeclarationsConsider the standard controller, shown in Figure 6.35. The module declaration beginswith a keyword, Controller, which indicates the module type, followed by the name of themodule, standard controller. The parentheses after the module name indicate that itcorresponds to a function, whose name is obtained by concatenating the stratum associatedwith the module type | which in the case of a control algorithm is the hierarchy | with194



Controller standard controller();Integer root timesteps:Hierarchy, Initialize root timesteps initialize method;VoidMethod root timesteps initialize method:Fixed, Archetype root timesteps, Value root timesteps initialize;Void root timesteps initialize(): Hierarchy.Figure 6.35: Module declarationVoid Hierarchy_standard_controller (Hierarchy hier){ Index t;for (t = 0; t < Hierarchy_root_timesteps(hier); t++)Level_integrator_method_execute(Hierarchy_level(hier)[ROOT]); }Figure 6.36: Standard controller function (simpli�ed)the module name. Thus, Hierarchy_standard_controller (Figure 6.36) is the functionassociated with the module standard controller.Module declarations can take on two other forms. First, the module can have no cor-responding function (Figure 6.37). This case is identical to the previous case, except thatthe function associated with the module is empty | or more accurately, is a pointer to theSelector slope selector;Real epsilon: Hierarchy, Value 0.001;Real threshold: Hierarchy, Value 0.200;Void slope select(): Grid.Figure 6.37: Module declaration with no corresponding function195



Generic Cluster cluster;IndexRegionList cluster: Level, Temporary, Axes Space, Elements clusters;Integer clusters: Level, Value 0;Real minimum cluster efficiency:Level, Initialize minimum cluster efficiency initialize method;Integer minimum cluster cells along any axis:Fixed, Initialize minimum cluster cells along any axis initialize method;Integer maximum cluster cells along any axis:Level, Initialize maximum cluster cells along any axis initialize method;Integer maximum cluster cells:Level, Initialize maximum cluster cells initialize method;Figure 6.38: Generic cluster declarationSolver CMHOG Euler solve():CoordinateSystem CARTESIAN1D CARTESIAN2D CARTESIAN3D, Mesh ISOTROPIC;Figure 6.39: Solver declaration on isotropic Cartesian meshesempty function Void_do_nothing. The other form that a module declaration can take is ageneric module, which is a module that is always active and that has no associated function.For example, every clustering algorithm requires certain parameters, such as the clusteringe�ciency (Figure 6.38). Since these parameters are common, they can be encapsulated ina single module, which is always active, and so the module's data items are available to allclustering algorithms.In addition to module type, name and function attributes, non-generic modules canhave attributes that determine whether they are active. Speci�cally, a module can be tiedto a particular subset of ranks, coordinate systems and mesh types (Figure 6.39). If the196



rank, coordinate system and mesh type are not among those declared, then the moduleis automatically deactivated. For example, a solver may be applicable only to isotropicCartesian meshes in one and two dimensions, so if the mesh has polar coordinates, the solveris automatically deactivated. If no such attributes are declared, then by default the moduleis active for all cases.6.3.1.2 Data Item DeclarationsSubsequent to the declaration of the module header, the module contains declarations forthe individual data items. The module in Figure 6.35 has two data items: root timesteps,an integer scalar that is encapsulated by the hierarchy and that describes the number oftimesteps that the control algorithm will perform at the root level, and root timestepsinitialize method, which is a method that initializes the value of root timesteps:VoidMethod root timesteps initialize method:Fixed, Archetype root timesteps, Value root timesteps initialize;Finally, the last declaration in the module isVoid root timesteps initialize(): Hierarchy.This declaration is a function prototype rather than a data item. It indicates that thefunction value of the method root timesteps initialize method operates on the hierarchy;that is, the function associated with the value root timesteps initialize is197



Hierarchy_root_timesteps_initializeThis example illustrates an important point: the stratum on which a method is stored isnot necessarily the stratum on which its function values operate. Here, the method | thatis, the data item containing the function pointer | is stored on the �xed data structure, butthe function pointed to by the method operates on the hierarchy. A more potent example ofthis principle is the case of an injection routine, which is the same for all grids on the samelevel, and is therefore stored on the level data structure, but which is applied to individualgrids (Figure 6.40).Data item declarations generally take on a simple form:<data-type> <data-item-name>: <stratum>, <permanence>, <attribute-list>;Here, a <data-type> is any of the valid data types described in Section 6.1, <data-item-name> is an identi�er, the <stratum> is the one that encapsulates the data item, and the<attribute-list> depends on the data type.6.3.1.3 Structured Data DeclarationsStructured data item declarations (Figure 6.41) have attribute lists that explicitly identifytheir structural attributes. For example, an ArrayListBox declaration includes the numberof arrays, the number of lists per array and the number of elements per list. The one exceptionto this rule arises in the case that the structured data type has dimensions of varying sizes| that is, in the case of Array, ArrayList and ArrayArray types. For these types, the198



Level 2Data
DataLevel 1

PPM field inject
PPM field injectGrid linear conservative monotonic interpolate

Grid cubic conservative monotonic interpolateVoidMethod PPM field inject: Level,Value linear conservative monotonic interpolate,Value cubic conservative monotonic interpolate;Void linear conservative monotonic interpolate(): Grid;Void cubic conservative monotonic interpolate(): Grid;Figure 6.40: Injection declaration199



Integer grids: Level;Integer time levels:Hierarchy, Value 2;RealList relative time:Level, Permanent, Elements time levels;IntegerList parents per grid:Level, Permanent, Elements grids;IntegerArray boundary regions per parent:Level, Permanent, Elements parents per grid;RealArrayList boundary region physical domain:Level, Permanent, Elements boundary regions per parent;IndexRegionArrayBox boundary in exterior:Grid, Enduring, Lists axes, Elements extrema;IndexRegionArrayListBox grid boundary in domain:Level, Temporary, Arrays grids, Lists axes, Elements extrema;Figure 6.41: Structured data item declarationsonly structural attribute that must be explicitly declared is the number of elements, becausethat attribute will itself be a reference to a structured data item, and so it will inheritits referent's less complex structural attributes. For example, an ArrayArray will haveas its Elements attribute a reference to an IntegerArrayList, which in turn has as itsElements attribute a reference to an IntegerArray, and so on. The Elements attribute ofthe IntegerArrayList is inherited by the ArrayArray as its Lists attribute, the Elementsattribute of the IntegerArray is inherited by the IntegerArrayList as its Lists attributeand therefore by the ArrayArray as its Arrays attribute, and so on.6.3.1.4 Dimensional Data DeclarationsDimensional data declarations (Figure 6.42) have attributes that describe the structural200



RealAxisDescription node position:Level, Permanent, AxisStaggering Node, Stencil mesh stencil;RealAxisContribution contribution: Injection,Increment linear increment, Contributors linear contributors;Figure 6.42: Dimensional data item declarationsproperties along each axis. In the case of AxisDescription declarations, one of the at-tributes, the Stencil, is optional: if there is no attribute declared, then the stencil is emptyby default, which means that the length along each axis will be the size of the interior of thecomputational domain of the encapsulating level. The AxisContribution case, however,is a bit more complex. In the �rst place, all AxisContribution data items are encapsu-lated in levels, and all are permanent, so declaring the stratum and permanence would besuperuous. Also, AxisContribution data items have some unique attributes, namely therelationship between the levels that the interpolation is performed on (that is, injection orprojection), the increment of the source loci surrounding the destination locus, and the num-ber of contributors, which is to say the number of functions on the solution at the loci thatcontribute to the interpolated value.6.3.1.5 Spatial Data DeclarationsSpatial declarations (Figure 6.43) have by far the greatest number of attributes. Theseattributes include not only stratum and permanence, but also structural attributes such asaxis set and staggering, variform structural attributes such as stencil and relative time list,set information such as member names, and functional attributes, both data and methods.201



Real SpacetimeVariableSet PPM field: Grid, Permanent,AxisSet AxisSet_all_axes(Space),Staggering Staggering_cell_center(Space),Stencil PPM field space stencil, Time PPM field time,Member density, Member energy, Member u, Member v, Member w,Precorrection PPM field parent flux correction,Postcorrection PPM field filial flux correction sum,Selection PPM field selected,Initialize PPM field initialize method,Inject PPM field inject method,Project PPM field project method,Extrapolate PPM field extrapolate method,Correct standard correct method,Select PPM field select method;Figure 6.43: Spatial data item declarationOnly the �rst four attributes (or the rank attribute, for Maximal sets), are required; allof the other attributes are optional. (In principle, only �rst two attributes are absolutelynecessary, since defaults could be chosen for the rank, axis set and staggering attributes.)For example, if no stencil is declared, then the size of the data item is the size of thecomputational interior of the grid; in other words, the data item has no ghost boundary. Ifno member names are declared, then the set has one member whose name is the same as thename of the data item. Alternatively, the set could have a Members attribute, with an integervalue that determines the number of members of the set; this approach is especially usefulfor declaring a set of multipurpose temporary variables. Finally, any missing functionaldata attributes correspond to null pointers, and any missing functional method attributescorrespond to empty functions. 202



VoidMethod PPM field inject method:Level, Archetype PPM field,Value CMHOG inject from coarser;Void CMHOG inject from coarser():Grid;VoidSetMethod PPM field extrapolate method:Level, Archetype PPM field,Member u, Value standard member reflected boundary axis1 velocity negate,Member v, Value standard member reflected boundary axis2 velocity negate,Member w, Value standard member reflected boundary axis3 velocity negate;Void standard member reflected boundary axis1 velocity negate(): Grid;Void standard member reflected boundary axis2 velocity negate(): Grid;Void standard member reflected boundary axis3 velocity negate(): Grid;Figure 6.44: Method data item declarations6.3.1.6 Method DeclarationsMethod declarations (Figure 6.44) typically require at least one attribute other than stratum,namely the value(s). In the case of a Method, this attribute is the only required attribute,but for a SetMethod, an archetype attribute is also required, as well as member attributes,whose purpose is to map the members of the method to the members of the archetypalspatial set.The number of method value attributes is arbitrary, because a method can refer to anynumber of di�erent possible functions, as shown in Figure 6.40. In the case of a SetMethoddeclaration, the order of the attributes indicates which method values are associated witheach member; that is, the Value attributes following each Member attribute indicate thefunction values associated with that member.203



6.3.2 HAMR Declaration ParserThe HAMR declaration language is implemented by a parser, which is a preprocessor thatconverts the declaration into a form that the speci�cation management software can use.The actual parsing | that is, the conversion from the declaration language to an internalrepresentation | is fairly trivial: aside from the data item headers themselves and thestratum and permanence declarations, the attributes typically have the form<keyword> <value>a form which lends itself to fairly straightforward parsing.The parsing step is implemented by a loop containing a simple switch statement. Whena module is parsed, its module declaration is stored, and after each data item declaration(including attributes) is parsed, the item's name and attribute values are stored in a queueof data items. After all the data items in the module are parsed, the queue is converted intoa static module representation, which is then inserted into a queue of modules. When allthe modules have been parsed, this queue is converted into a static list of data items, eachtagged with its module's identi�er.Within a declaration, identi�ers such as data item names can be expressed in either of twoforms: as delimited strings or without delimiters. In the former case, the identi�er can bea collection of any (non-quote) characters delimited by double quotes, including charactersthat play a speci�c role in the declaration syntax, such as parentheses, colons, commas,semicolons and periods. In the latter case, the identi�er can contain any characters except204



Declaration: "This is the name of a (silly) data item:"Name: This is the name of a (silly) data item:Token: This_is_the_name_of_a_silly_data_itemComparison: THISISTHENAMEOFASILLYDATAITEMFigure 6.45: Identi�er representationsthe special characters listed, and the identi�er is terminated by the colon.Once the complete set of data items has been obtained, implicit information can bederived. First, alternative forms of each data item and member name are obtained. Theparser represents such identi�ers in three ways: in their original form as laid out in thedeclaration, as C-like identi�ers consisting of alphanumeric characters and underscores, andas alphanumeric strings, all upper case, used for comparisons (Figure 6.45). Multiple copiesof the latter two forms are generated, one based on just the data item name and one thatconcatenates the module name and the data item name, in order to disambiguate in theevent that there are multiple data items with the same name | for example, in the case ofthe referents of variform attributes | or multiple sets with the same member names. (Inthe case of member names, three versions are generated: the original, the concatenation ofthe data item name and the member name, and the concatenation of the module name, dataitem name and member name.) Next, all attribute references are resolved, by comparing thevalue of each attribute to the names of all data items or members of the appropriate types.(An unresolvable reference causes the parser to terminate with an error report.) Third,reciprocal attributes are determined: for each reciprocal attribute of a data item, all dataitems of the appropriate types are examined to determine whether the reciprocated attribute205



refers to the reciprocating data item. Finally, the results of the parse are output. All of theresults of the parse take the form of C macros, forming several categories:� number of data items;� data item indices;� attribute macros for attributes that are based on the rank of the domain;� macros associating the data items with �elds of appropriate data structure;� declaration lists.The �rst three categories are straightforward; for example,#define GRID_BOOLEAN_SPACEPARAMETERSETS 3#define OVERALL_SELECTION_INDEX 0#define Grid_Boolean_SpaceParameterSet_staggering(i,rank) \... (i == OVERALL_SELECTION_INDEX) ? Staggering_center(rank) : ...The �eld macros provide a clean programming interface to data items, but they are a bitmore complicated; for example#define Grid_overall_selection(grid) \Grid_Boolean_SpaceParameterSet(grid)[OVERALL_SELECTION_INDEX]Finally, the declaration lists provide the link from the declaration to the speci�cation,since these lists contain the values of the various attributes of the data items. For example,consider the list of names of BooleanSpaceParameterSet data items. This list might bede�ned as 206



#define GRID_BOOLEAN_SPACEPARAMETERSET_NAME \{ "overall selection", "PPM field selection", "gravity selection" }Other lists can be similarly de�ned, not only lists of scalars and strings but also lists offunction pointers:#define FIXED_VOID_METHOD_VALUE \{ Grid_item1_initialize, Grid_item2_initialize, ... }6.3.3 HAMR Declaration Data StructureThe declaration lists produced by the parser provide a powerful means of supplying thedeclaration information to the speci�cation, using a feature of the C language that is rarelyexploited to its full potential. Speci�cally, the C language allows dimensioned arrays ofscalars, pointers or strings to be initialized with prede�ned lists.For example, consider the name list macro de�ned in Section 6.3.2. This list can be usedas the initialization list for a statically dimensioned list of strings:static String Grid_Boolean_SpaceParameterSet_name[] =GRID_BOOLEAN_SPACEPARAMETERSET_NAME;which the C preprocessor converts tostatic String Grid_Boolean_SpaceParameterSet_name[] ={ "overall selection", "PPM field selection", "gravity selection" };When the C compiler parses this declaration, it constructs a static array of the appropriatesize in memory, which contains the appropriate values.207



In this manner, the values of all of the declaration lists are automatically declared asstatic arrays that are global with respect to the object �le that contains them, and hiddenfrom the functions in all other object �les. In fact, preprocessor directives guarantee thedeclaration of only the minimal collection of such static arrays:#ifdef GRID_BOOLEAN_SPACEPARAMETERSET_NAMEstatic String Grid_Boolean_SpaceParameterSet_name[] =GRID_BOOLEAN_SPACEPARAMETERSET_NAME;#endif /* #ifdef GRID_BOOLEAN_SPACEPARAMETERSET_NAME */An important advantage of this approach is that function pointers can be initialized inthis manner, just as if they were scalars:static VoidMethod Fixed_Void_Method_value[] ={ Grid_shock_tube_initialize, Grid_comet_initialize };To the parser, these function names are simply strings constructed while parsing the decla-ration; to the compiler, they refer to speci�c, existing functions, whose addresses are loadedinto this convenient predimensioned list.This arrangement also illustrates the reason that the parsing algorithm must be separatefrom HAMR itself: if the parser were activated at run time rather than before compiletime, it would be unable to convert the strings in method declarations into actual functionpointers, because there would be no platform-independent means of determining the functionthat matched the string | and even a platform-dependent approach would be likely to beunacceptably cumbersome. If the parser is a preprocessing step, however, this determinationis not required, because the parser considers all of these results to be strings to be output,208



and it is not in a position to know that the output it creates will be used as macro de�nitions,from which the compiler will construct the static lists. Thus, the C preprocessor and thecompiler combine to perform the task of determining the method values' function pointers,a task that would be at best extremely di�cult to code explicitly, but that is trivial whenaddressed in this manner. In fact, this kind of software engineering approach drove much ofthe development of HAMR, because one means of achieving portability is to take advantageof a small number of either commonly-available or homegrown �lters.To make the declaration lists available outside the object �le in which they are de�ned,HAMR provides a declaration data structure (Figure 6.46), which is essentially a collectionof pointers that are set to point to the appropriate static list (Figure 6.47), or are null inthe case that no appropriate list exists. The routine that sets the pointers is in the sameobject �le as the lists themselves, and so the lists need not be accessed by any other routine.In fact, the object �le that contains the static lists contains only the functions to set thedeclaration structure's pointers to the appropriate static lists.6.3.4 HAMR Speci�cationThe process of constructing the HAMR speci�cation (Figure 6.48) is divided into severalsteps, which are variously performed by:� the application designer;� special-purpose preprocessors; 209



parent local local local

DeclarationModuleDeclarationStructureKindsDeclarationStructure
module coordinate system dimension

module typemodule is genericmodule is activemodule methodmodule methodsmodule coordinate systemsmodule namemodule meshesmodule meshmodule coordinate systemmodule method namemodule method function name
moduleskinds data structurename declaration structurepermanence declaration structureresolution declaration structure[GRID][REAL][SPACEPARAMETERSET]ParameterDeclarationspatial declaration structure� � �spatial resolutiontemporal resolutionresolution declaration structure FALSETRUE FALSE � � �static staticFigure 6.46: Declaration structure

210



#ifdef GRID_BOOLEAN_SPACEPARAMETERSETS# if TypeParameterType_has_name(BOOLEAN,SPACEPARAMETERSET)if (Declaration_parameter_declaration(decl,GRID,BOOLEAN,SPACEPARAMETERSET) !=(ParameterDeclaration)NULL) {# ifdef GRID_BOOLEAN_SPACEPARAMETERSET_NAMEDeclaration_name(decl,GRID,BOOLEAN,SPACEPARAMETERSET) =(StringList)SystemLevel_Type_ParameterType_name;# endif /* #ifdef GRID_BOOLEAN_SPACEPARAMETERSET_NAME */} /* if Declaration_parameter_declaration */# endif /* #if TypeParameterType_has_name */#endif /* #ifdef GRID_BOOLEAN_SPACEPARAMETERSETS */Figure 6.47: Setting a pointer on the declaration structure� the standard C preprocessor;� the C compiler;� the resulting executables that the compiler produces.The �rst two steps, that of designing the declaration and parsing it, are performed as de-scribed in Sections 6.3.1 and 6.3.2, by the application designer and by the parser, respectively;the result is several header �les containing the set of macro de�nitions that describe the dec-larations. In addition, the functions that implement both the standard AMR algorithmsand the application algorithms are passed through a �lter that extracts C function headersand converts them to prototypes, producing additional header �les. Next, the source codefor the functions that build the declaration data structure and assign pointers to the staticdeclaration lists is compiled, as is the associated set of functions for building the speci�cationfrom the declaration data structure. 211



data structureSpecificationDeclarationdata structure

DeclarationsData andMethod SourcePredefinedAlgorithm ApplicationSourceAlgorithm SourceDeclarationBuilder SourceBuilderSpecificationFilterSource toPrototype FilterSource toPrototypeParser PrototypesPredefinedAlgorithm ApplicationPrototypesAlgorithmDefinitionsList MacroDeclaration Compiler CompilerDeclarationBuilderwithglobal staticdeclaration lists create declarations Speci�cationBuildercopy declarations
Figure 6.48: Building a speci�cation212



When a HAMR application is run, its �rst task is to build the speci�cation, which isachieved by building the declaration data structure, and then copying each of the staticdeclaration lists into a dynamically allocated instance of an appropriate data type, whichnot only contains all of the appropriate information, but also provides conveniently indexedaccess to its values (Figure 6.49). Thus, the HAMR speci�cation has essentially the samedesign as the declaration structure, but instead of mere pointers to existing static lists, thespeci�cation contains its own copies of the lists, which need not be lists themselves; thatis, they can be more complex structured types such as Arrays and ArrayLists. However,HAMR structured types are allocated contiguously, so the values of the speci�cation arrayscan be directly copied from the static lists that the declaration structure points to, simplyby dereferencing the more complex structures down to contiguous lists, in much the samemanner as operations performed on complex structured types. Once the speci�cation hasbeen built via these copies, the declaration data structure can be discarded, and the staticdeclaration lists, which consume a trivial amount of memory even for the most complicatedsets of declarations, are thereafter ignored.The speci�cation is divided into two main sections, one which is indexed by module andone that is indexed by data item. It also contains a few additional attributes that describegeometric properties of the overall domain: the rank, mesh type and coordinate system.The section that is indexed by module includes the number of modules, and the followingmodule attributes for each module:� the module type; 213



``overall selected'' ``PPM field selected''``expanded overall selected''``overall selected'' ``density'' ``u'' ``w''``v''``energy''``expanded overall selected''``overall selected'' ``PPM field selected''``expanded overall selected''
``overall selected'' ``density'' ``u'' ``w''``v''``energy''``expanded overall selected''

static Grid Boolean SpaceParameterSet name Declaration... static Grid Boolean SpaceParameterSet original member names1 1 5static Grid Boolean SpaceParameterSet original member name...
1 1 5 Speci�cationSpecification name(spec,GRID,BOOLEAN,SPACEPARAMETERSET)Specification original member names(spec,GRID,BOOLEAN,SPACEPARAMETERSET)

...

......Specification original member name(spec,GRID,BOOLEAN,SPACEPARAMETERSET)[item][member]
Specification original member name(spec,GRID,BOOLEAN,SPACEPARAMETERSET)...

Figure 6.49: Declaration and speci�cation versions of set member information214



� the module name;� the module function pointer, and the name of the module function;� ags for whether the module is generic and whether it is active;� the list of meshes under which the module is active, and the number of such meshes;� the list of coordinate systems under which the module is active, and the number ofsuch coordinate systems;� the list of ranks of the coordinate systems under which the module is active.Essentially, these attributes simply identify the module and the circumstances under whichit is active.As for the section indexed by data item, it contains considerably more attributes, includ-ing:� the data item name;� the module that contains the data item;� the permanence;� the spatial and temporal resolution;� the list of initial or potential values the data item or its members can take on, and thenumber of such values; 215



� spatial attributes such as axis set and staggering;� information about the names of set members;� the referential attributes of the data item, including the structural attributes of struc-tured types, the set archetype, and functional data and method attributes;� the variform referential attributes, such as stencil and relative time list;� the reciprocal attributes for all of the referential attributes, both uniform and variform.Referential attribute information is coded as three enumerated entries | the stratum,the element type and the parameter type | and one index, which indicates the particulardata item of the stratiform type. This approach has the advantage that the speci�cation canfully code all references, without having any access to the data structures that contain thedata items that the coded references describe, let alone to the data items themselves. Thus,any part of the overall data structure can learn about any of the referential relationshipsbetween data items, regardless of whether it can access the referers or referents.6.3.5 The HAMR Data StructureThe HAMR data structure is an implementation of the data structure described in Section5.1, comprising all of the parts shown in Figure 5.4. For each stratum, HAMR de�nes twodata structures: the stratum itself, and the structure of stratum data. For example, the twohierarchy data structures are Hierarchy and HierarchyData. While the stratum structures216



are quite simple | essentially just a few pointers | the structures of stratum data are farmore complicated.Each structure of stratum data consists of two major parts: a set of pointers to lists ofdata items, one for each data type, and a structure of attribute appendices (Figure 6.50).Essentially, the structure of stratum data provides a hierarchical collection of slots that canbe �lled according to the needs asserted by the speci�cation. For the data items themselves,the higher level slot is a framework | a list of pointers to instances of the appropriate datatype | that is created when the structure itself is created, and whose length is determinedby the appropriate entry in the speci�cation. The lower level slots are the individual pointers| that is, the elements of the data type pointer list | that are �lled on demand, accordingto both the extent categories of the data items and the needs of the algorithms that operateon the data structure. In contrast, the attribute appendix structure is an array of pointersto appendices, rather than a set of individual slots, but it is also �lled on demand. Theadvantage of this arrangement of appendices is that it allows all appendix operations tobe generic with respect to the data type that the appendix describes, as opposed to theoperations on the data items (or their slots) themselves, each of which is speci�c to anindividual data type.So, on each structure of stratum data, every data type is represented by two pointers,one to a list of slots that hold instances of the type, and one to a list of slots that holdappendices that describe the instances of the type. More precisely, the cost is one pointer foreach existing data type, and one pointer for each combination of element type and parameter217



BooleanSpaceParameterSetParameterListIndexSpaceParameterSetParameterListIntegerSpaceParameterSetParameterListRealSpaceParameterSetParameterListCharacterSpaceParameterSetParameterList selection densityenergy
GridSingleParameterStructureGridListParameterStructureGridArrayParameterStructureGridArrayBoxParameterStructureGridArrayListParameterStructureGridArrayListBoxParameterStructureGridArrayArrayBoxParameterStructureGridQueueParameterStructureGridArrayArrayParameterStructureGridSpaceParameterSetParameterStructureGridSurfaceParameterSetParameterStructureGridMaximalParameterSetParameterStructureGridSpacetimeVariableSetParameterStructureGridSurfaceVariableSetParameterStructureGridMaximalVariableSetParameterStructureGridAxisDescriptionParameterStructureGridAxisContributionParameterStructureGridMethodParameterStructureGridSetMethodParameterStructureGridSpaceParameterSetParameterStructure re�nement factorstencilaxis lociaxis setstaggering:::

GridSpatialFormAppendixGridFunctionalDataAppendixGridFunctionalMethodAppendix:::
GridAppendicesStructureGridParameterStructureGridDataStructureGridParameterStructure

12 4 4

GridAppendixStructure[BOOLEAN][SPACEPARAMETERSET][0]
� � �� � �

Figure 6.50: Structure of stratum data218



type, since the array of appendix pointers includes some combinations that are not types; forexample, the VoidList type combination is not a valid data type.7 Aside from a very smallnumber of additional data �elds | for example, a structure of level data also has pointersto the immediately coarser and immediately �ner structures of level data | a structureof stratum data when �rst allocated consists only of these two sets of pointers, which areinitially null. Additional memory consumption is driven entirely by demand.While the hierarchical slot arrangement of a data type is quite simple, the structuralproperties of an appendix are far more complex. This complexity arises because of thedesire to minimize the amount of memory consumed by the data structure. Thus, just as alist of pointers to data items is allocated on demand, each appendix structure is allocatedon demand, in essentially the same manner.The appendix structure is itself merely a collection of pointers, speci�cally to the variouscategories of attributes that the various data types require. For example, each appendixcontains pointers to structures that contain the attributes that describe� the computational shapes of structured types;� the computational shapes of spatial types;� the time information attached to a relative time level list;7There are a total of 164 valid data types: thirteen element types for each of the nine structured parametertypes, four element types for AxisDescriptions, one element type for AxisContributions, �ve elementtypes for each of the six spatial parameter types, and six element types for each of the two method parametertypes. In contrast, there are 266 combinations of element type and parameter type.219



� the temporal information of spatiotemporal types;� functional data references;� functional method references;� method value indices.Encapsulating these pointers within a single structure incurs very little cost | a few unusedpointers for each data type | while ensuring that operations on the appendix structure areappropriate for all data types.This same strategy applies equally well at the bottom level of the appendix structure.For example, the structure that contains the computational shape attributes for spatial typeshas slots for the stencil, thickness, re�nement factor, axis loci, and so on, yet only Surfacesets require a thickness attribute. Thus, just as with each category of attributes, space foreach individual attribute is allocated only if required by the data type to which the appendixbelongs.Each individual attribute is represented by a list, with one entry for each data item ofthe associated type. Some lists, such as for functional method attributes, contain references| that is, pointers to other data items. Other lists, such as for the staggering, contain scalarattribute values; in the case of the staggering, the attribute is a list of staggering values.Finally, some lists, such as for the axis loci, contain a small structure for each data item.Creating a structure of stratum data, then, is a straightforward process. First, the basestructure itself is allocated, and all its constituent pointers are set to null. Second, for each220



data type, the appropriate appendix framework is allocated if there are data items of thattype, and its values are initialized to null values. Finally, for each data type, the appropriatedata item framework is allocated, and all its data item pointers are set to null.6.3.6 Data Item MacrosMany implementations of Berger's AMR strategy, including HAMR, rely on elaborate chainsof pointers to obtain data from a variety of sources. For example, Haupt [Hau95] reportsconstructs such asgrid%gfcn(ESTRE)%tlev(1)%datawhile Bryan [Bry96c] employs such chains asTemp->GridHierarchyEntry->ParentGrid->GridData->AreSubgridsStatic()HAMR would have this problem as well; in fact, it would have a much more severe form ofthe problem, since it has much more elaborate data structure de�nitions. A typical HAMRpointer chain looks like:grid->grid_data->level_data->hierarchy_data->hierarchy_data_parameter_structure.hierarchy_data_single_parameter_structure.Hierarchy_IntegerStencil_Single[0]To avoid this problem, HAMR provides a �lter that extracts data members from a Cstruct or union de�nition and converts them into macros. The �lter acts as a very simpli�ed221



type de�nition parser, examining the de�nition and determining which identi�ers are datatypes and which are members. From these members, macros can be constructed whosenames are the concatenation of the encapsulating data structure type and the member name.For example, a member of a level structure called finer_level would have as its macrode�nition:#define Level_finer_level(level) ((level)->finer_level)The �lter parses not only the data structure de�nition, but also any #include directivesin the �le. For each #include directive that refers to a type de�nition �le | that is, aninclude of a �le whose name is of the form filename_typedef.h | the resulting �le ofmacro de�nitions will also include the associated �le of macro de�nitions; for example,#include <griddata_typedef.h>in the �le containing the data structure de�nition is converted to#include <griddata_macro.h>in the resulting �le containing the macros. In addition, on discovering such an #includedirective, the �lter parses the associated macro �le, and creates new macros that associatethe data structure members associated by the macros in the included �le to the data structurein the top level �le. Thus, for example, if the included macro �le contains a de�nition forLevelData_Level_Real_List(leveldata), then a de�nition222



#define Level_Level_Real_List(l) \LevelData_Level_Real_List(Level_level_data(l))will be placed in the macro �le that the �lter is currently producing. In fact, since the �lterapplies this approach to all data structure de�nitions, the �lter produces a set of macrosthat ultimately associates the highest level data structures with structure members on thelowest level data structures; for example,#define Grid_Fixed_Real_Single(g) \GridData_Fixed_Real_Single(Grid_grid_data(g))In this example, the macro associates the grid structure to a real scalar encapsulated by thestructure of �xed data, because the expansion of the top level macro is itself a macro, whoseexpansion is a macro, and so on.In addition, the declaration parser provides another level of macros on top of the macrosprovided by the �lter. These macros associate the name of a data item with the appropriatedata structure member, by combining the data structure membermacro with the appropriateindex into the data structure member, which is of course a list of pointers to data items of theappropriate stratiform type. The set of macros for each scope includes all broader scopes, andtherefore the application programmer is not only provided with a clean, intuitive interface tothe data, but is also relieved of the burden of being constantly aware of the speci�c, detailed,hierarchical arrangement of data structures that constitute the overall HAMR data structuresystem. 223



6.3.7 Prede�ned Data ItemsOne of the primary advantages of this generalized approach to data management is that itallows general purpose data items to be declared, stored and managed in precisely the samemanner as application-speci�c data items. For example, every grid has associated with it anIndexRegion called locus_in_domain, which indicates the diagonally opposite endpoints ofthe computational subdomain that the grid subtends. This region is declared as a data itemencapsulated by the grid, and the data management system treats it in the same manner asany other data item.To take full advantage of this capability, HAMR includes a set of prede�ned modulesthat describe the standard data items and methods that are available for all applications.These modules include the standard data items that all data structures require, as well asthe standard AMR algorithms, and a number of methods that are likely to prove useful toapplication developers.Standard data items enscapsulated in the structure of hierarchy data are declared in ageneric module called Hierarchy data. These data items include:� ags indicating which axes have periodic exterior interfaces;� ags indicating which exterior interfaces are reecting;� the number of cells along each axis at the coarsest resolution;� the maximal active stencil; 224



� the maximum depth allowed;� a queue of regions indicating the arrangement of root level grids.The module also includes methods that initialize these various data items.Standard data items enscapsulated in the structure of level data are declared in a genericmodule called Level data. These data items include:� the depth of the level;� the re�nement factor with respect to the immediately coarser level;� the number of cells along each axis of the domain at the level's resolution;� the bu�er region;� the re�nement period;� a queue of regions that are to be selected;� a queue of regions that are not to be selected.The module also includes methods that initialize these various data items.The queues of regions to be selected or not selected are a useful addition to HAMR, be-cause they provide the ability to use static grids, or to declare certain regions as permanentlyre�ned. In fact, the use of these queues is slightly more subtle: their values are regions not ofcomputational space but of computational spacetime. Thus, for example, a particular regioncan be highly re�ned for a period of time, then less re�ned afterwards, or vice versa.225



Standard data items enscapsulated in the structure of grid data are declared in a genericmodule called Grid data. These data items include the locus of the subgrid in the com-putational domain, and the various lists of relationships between the grid and other grids,including the relationships between its interior and its parents, between its boundary and theparents of its boundary, between its boundary and its siblings, between it and its children,and the set of regions of its boundary that are on the exterior of the computational domain.An important point about these relationships is that they are static with respect to thelifetime of the grid, except for the relationships to children. The reason the relationships arestatic is that the arrangement of grids at a particular level is �xed at regridding, and doesnot change until the next regridding | at which time, the grids in question are discarded,because they are replaced by new grids, which cover the region that the phenomenon ofinterest has moved into. Thus, while a parent, over the course of its lifetime, will have manydi�erent sets of children, a child over its lifetime will have exactly one set of parents. As aresult, interactions between levels can be expressed more cleanly, and with more con�dencein the immutability of the relationships, if they are expressed as an interaction between agrid and its parents, rather than between a grid and its children. (In some cases the latteris unavoidable, but to the extent that it can be avoided, it should be.)Various mesh types have data items that are speci�cally associated with them. Forexample, isotropic meshes require a coarsest cell size stored on the hierarchy, and a local cellsize stored on the level; in contrast, rectilinear meshes require the positions of the nodes andcell centers at the root level resolution, as well as the sizes of the cells, which are stored on226



the hierarchy, and analogous information at the local resolution stored on each level.Just as standard data items are declared, so too are the standard AMR algorithms. Theseinclude most of the algorithms described in Section 6.4. Typically, the modules for thesealgorithms look like:Integrator standard integrator().However, a few of them declare data items as well. For example, the standard re�ner declaresa �eld of overall selection ags on each grid, onto which are mapped the selection ags fromeach variable, which are application speci�c data items. Thus, for example, the clusteringalgorithm needs to know nothing about the application variables | such as density, energyand velocity | because their selection ags are subsumed by the overall selection �eld.6.3.8 SummaryWhile the HAMR data management system is based on the theoretical underpinnings laidout in Chapter 5, its capabilities extend beyond those precepts to provide tremendous powerand exibility, which are available with minimal e�ort on the part of the application sci-entist. This aspect of HAMR makes it a natural way to express and perform complex,sophisticated simulations, even if they do not require adaptive techniques, or even if theadaptive techniques they require do not match Berger's strategy. More importantly, how-ever, they provide an ideal bridge between an application scientist and the AMR algorithmsnecessary for utilizing Berger's strategy. 227



6.4 Algorithms for Berger's AMR in HAMRHAMR implements the standard algorithms that perform the operations required by Berger'sAMR strategy. These algorithms include:� control;� integration;� boundary collection;� extrapolation;� re�nement;� regridding;� Richardson truncation error estimation;� selection;� clustering;� correction;� projection.However, HAMR does not merely copy the existing AMR algorithms. Instead, it imple-ments versions of them which take full advantage of the expressive power of the HAMR data228



Void Hierarchy_standard_controller (Hierarchy hier){ if (Hierarchy_root_timesteps(hier) < 1) return;for (ts = 0; ts < Hierarchy_root_timesteps(hier); ts++) {Level_integrator_method_execute(Hierarchy_level(hier)[0]);Hierarchy_outputter_method_execute(hier);}} Figure 6.51: Standard controllerstructure and data management infrastructure. Thus, despite the fact that HAMR is basedon the work of Berger and collaborators, these algorithms themselves constitute a signi�cantcontribution to the AMR canon.6.4.1 Control AlgorithmThe control algorithm provided for HAMR loops over the chosen number of root level inte-grations, performing two operations for each: the integration itself, and an output operation(Figure 6.51).6.4.2 IntegrationHAMR's standard integration algorithm (Figure 6.52) implements the recursive algorithmdescribed in Section 4.4. The halting condition for the algorithm is that it has reached anempty level, at which point it returns without computing. Otherwise, the algorithm re�nesif appropriate. Then, it collects boundary values. Next, it determines the timestep interval,229



Void Level_standard_integrator (Level lev) {if (Level_grids(lev) < 1) return;if (Level_old_timestep(lev) % Level_refinement_period(lev)) == 0)Level_refiner_method_execute(lev);Level_standard_boundary_collector(lev); Level_timer_method_execute(lev);Level_solver_method_execute(lev);if (Level_not_finest_existing(lev) &&(Level_grids(Level_finer_level(lev)) > 0))for (r = 0; r < Level_refinement_factor_from_finer(lev)[TIME]; r++)Level_standard_integrator(Level_finer_level(lev));Level_incrementer_method_execute(lev);if (Level_not_finest_existing(lev) &&(Level_grids(Level_finer_level(lev)) > 0)) {Level_corrector_method_execute(lev);Level_projector_method_execute(Level_finer_level(lev));}} Figure 6.52: Standard integrationan operation that for many applications is empty; however, some applications constrain thetime interval not to overtake the minimum sound speed on the grid, so this operation canbe an application-speci�c constraint enforcement. Afterwards, the solver is called for allgrids at the current level. Then, the integrator performs the r recursive calls to itself on theimmediately �ner level, followed by incrementing the time information. Finally, if the levelis not the �nest, then correction and projection are performed.6.4.3 Re�nementHAMR's standard re�nement algorithm (Figure 6.53) implements the recursive re�nementalgorithm described in Section 4.4. First, if the level is the deepest permitted, then no re-230



Void Level_standard_refiner (Level lev) {if (Level_depth(lev) == Level_maximum_depth_allowed(lev))return;Level_standard_boundary_collector(lev);Level_overall_selected_create(lev);if (Level_grids(Level_finer_level(lev)) > 0)Level_standard_refiner(Level_finer_level(lev));Level_selected_sets_create(lev);Level_selector_method_execute(lev);Level_merge_selected_sets_into_overall_selected(lev);Level_select_domain_exterior(lev);Level_merge_permanently_selected_into_overall_selected(lev);Level_selected_sets_delete(lev);Level_expand_overall_selected(lev);if (Level_not_root(lev))Level_merge_overall_selected_into_coarser(lev);Level_clusterer_method_execute(lev);Level_overall_selected_delete(lev);Level_standard_regridder(Level_finer_level(lev));Level_clusters_delete(lev);if ((Level_grids(Level_finer_level(lev)) > 0) &&Level_is_at_initial_timestep(lev))Level_standard_refiner(lev);if (Level_not_finest_allowed(lev))Level_get_children(lev);} Figure 6.53: Standard re�ner
231



�nement is possible, so the operation terminates. Otherwise, boundary values are collected,in case the selection criterion requires them. Next, the ag �elds that indicate the selectedcells are allocated, in order to allow �ner levels to map their ags into them, to ensure cover-age. Then, if �ner levels have grids, the re�nement operation is called recursively. After therecursion terminates, the selection algorithm is applied, and the results are merged togetherto provide the aggregate selection on each grid, including the expansion to cover bu�ersand boundary regions. These expanded selection ags are merged with the selection agsat the immediately coarser level, to ensure that these grids are fully covered, and then theclustering algorithm is applied. The selection ag �elds are deallocated, and then the regrid-ding algorithm is applied. Next, if the re�nement is occurring during initialization, then there�nement algorithm is applied recursively. Finally, the grids determine their relationshipswith their children.6.4.4 RegriddingHAMR's standard regridding algorithm (Figure 6.54) replaces a set of grids with a new setthat more properly covers the phenomena of interest. The algorithm begins by ensuringthat the level is not the coarsest level, since the grids at the coarsest level are never altered,since they delimit the computational domain. Next, it deletes all enduring data items on thegrids, since they will not be needed for regridding. If there are new grids to replace the oldgrids, then they are created, and their sibling and parent relationships are determined. Thevalues on the new grids are injected from their parents, and then more accurate values are232



Void Level_standard_regridder (Level lev) {if (Level_is_coarsest_existing(lev))return;old_grids = Level_grids(lev);old_grid = Level_grid(lev);for (g = old_grids - 1; g >= 0; g--)Grid_parameter_all_enduring_delete(Level_grid(lev)[g]);if (clusters == 0){ Level_grids(lev) = 0; Level_grid(lev) = NULL; }else {Level_grids(lev) = clusters;Level_grid(lev) = GridList_framework_allocate(Level_grids(lev));for (g = 0; g < new_grids; g++)Level_grid(lev)[g] = Grid_create(lev, g, cluster[g]);Level_get_siblings(lev);Level_get_parents(lev);if (Level_not_finest_existing(lev))Level_get_parents(Level_finer_level(lev));for (g = 0; g < new_grids; g++)Grid_inject_interior_from_coarser(Level_grid(lev)[g]);if (old_grids > 0)Level_copy_from_overlaps(lev, old_grid, old_grids);}if (old_grids > 0) {for (g = old_grids - 1; g >= 0; g--)Grid_delete(old_grid[g]);old_grid = GridList_framework_free(old_grid, old_grids);}Level_get_exterior_regions(lev);for (g = 0; g < new_grids; g++)Grid_parameter_all_enduring_create(Level_grid(lev)[g]);} Figure 6.54: Standard regridder233



Void Grid_standard_boundary_collector (Grid grid) {if (Grid_not_at_coarsest_level(grid))Grid_standard_parent_boundary_collect(grid);Grid_standard_sibling_boundary_collect(grid);Grid_standard_boundary_reflect(grid);Grid_extrapolator_method_execute(grid);} Figure 6.55: Standard collectorVoid Grid_standard_parent_boundary_collect (Grid grid) {for (i = 0; i < items; i++)for (par = 0; par < Grid_parents(grid); par++)for (member = 0; member < members; member++)Grid_inject_method_execute(grid, Grid_parent(grid)[par], REAL, SPACETIMEVARIABLESET, p,Grid_parent_in_boundary(grid)[par][MINIMUM]),Grid_parent_in_boundary(grid)[par][MAXIMUM]),Grid_boundary_in_parent(grid)[par][MINIMUM]),Grid_boundary_in_parent(grid)[par][MAXIMUM]));} Figure 6.56: Collection from parentscopied from any of the old grids that overlap the new grids. The old grids are then deleted,the exterior region information is obtained for them, and then the enduring data items arecreated.6.4.5 Boundary CollectionHAMR's collection algorithm (Figure 6.55) obtains the ghost boundary values for a grid.Boundary values are collected from parents (Figure 6.56), siblings (Figure 6.57), from the234



Void Grid_standard_sibling_boundary_collect (Grid grid) {for (i = 0; i < items; i++)for (sib = 0; sib < Grid_siblings(grid); sib++)for (member = 0; member < members; member++)RealField_offset_copy(Grid_Grid_Real_SpacetimeVariableSet(grid)[i][mb][old_time_level],Grid_Grid_Real_SpacetimeVariableSet(sibgrid)[i][mb][old_time_level],axis_set, staggering, sib_staggering, axis_loci, sib_axis_loci,sibling_boundary_size,Grid_sibling_in_boundary(grid)[MINIMUM],Grid_boundary_in_sibling(grid)[MINIMUM],dimension);} Figure 6.57: Collection from siblingsgrid itself, and from the exterior, in that order. In this way, the most accurate value replacesless accurate values: the values injected from the coarser level are replaced by values copiedfrom elsewhere on the local level, and values on the exterior of the problem domain areextrapolated.The importance of this approach can be seen in Figure 6.58, which depicts the boundarycollection for the protostellar jet example shown in Figure 2.13. Because the jet inow is onan otherwise reected boundary, the reection must occur before the extrapolation, whichin this case sets the jet inow values on a small subset of the cells on the reected exteriorboundary. If the order were di�erent, the jet inow values would be replaced by reectingthe cells abutting the jet.Reecting and periodic boundaries are special cases that are addressed in a manner very235



5 64 52 430-3 -2 0-1-4 -3 -2-1-2 -1 1210-10 1 2312 343 5 64 52 430-3 -2 0-1-4 -3 -2-1-2 -1 1210-10 1 2312 3454 6 73 54320-2-3-4-5 1-1
876 5 64 52 430-3 -2 0-1-4 -3 -2-1-2 -1 1210-10 1 2312 3454 6 73 54320-2-3-4-5 1-1

8764321-1-2-3-4-505 64 52 430-3 -2 0-1-4 -3 -2-1-2 -1 1210-10 1 2312 3454 6 73 54320-2-3-4-5 1-1
876-4-3-2-123451515

5 64 52 430-3 -2 0-1-4 -3 -2-1-2 -1 1210-10 1 2312 3454 6 73 54320-2-3-4-5 1-1
8760-4-3-2-112345

siblingsandparentsfromcollect reect
inow negatevelocityjetexterior

Figure 6.58: Boundary collection order236



di�erent from other boundaries, and very di�erent from one another. Periodic boundariesare implemented not with special code, but by translating the domain when determiningsibling relationships (Figure 6.59). Thus, obtaining periodic boundary values requires noadditional instrumentation in the sibling boundary collection algorithms, and minimal ad-ditional instrumentation in the algorithm that determines sibling relationships, since thetranslation requires nothing more than making extra copies of the input list of grid regionsand adding a constant to them.Reecting boundaries, on the other hand, require an entire additional algorithm. Foreach grid, the algorithm determines whether any of its boundaries reect | based on a setof ags encapsulated on the hierarchy, and the position of the grid within the overall domain| and if so, it copies their outermost interior values into the exterior boundary region, usinga stride of -1 along the reecting axis.Some physical quantities, such as velocities, negate their values on reection. Since theboundary reection algorithm is not in a position to know whether a particular variable hasthis property, the negation can be implemented as the extrapolator for the variable; that is,each variable that requires negation can have as its extrapolate attribute a function thatnegates it if the exterior region is along the appropriate axis. (For example, the x componentof velocity should only be negated along a reecting boundary that is perpendicular to thex-axis.) If additional instrumentation is required, for example in the case of the small jetinow within a reecting boundary, then the call to the negation algorithm can be bundledwith the inow routine. 237



Figure 6.59: Periodic boundaries implemented as translated siblings238



Void Level_standard_time_incrementer (Level lev) {for (i = 0; i < real_list_items; i++)if (Level_is_time(lev, REAL, LIST, i)) {Level_new_time_level(lev,REAL,LIST)[i] =(Level_new_time_level(lev,REAL,LIST) [i] + 1) %Level_elements_scalar(lev,REAL,LIST,i);Level_old_time_level(lev,REAL,LIST)[i] =(Level_old_time_level(lev,REAL,LIST) [i] + 1) %Level_elements_scalar(lev,REAL,LIST,i);Level_absolute_level_timestep(lev,REAL,LIST)[i][new_time_level] =Level_absolute_level_timestep(lev,REAL,LIST)[i][old_time_level] + 1;Level_time_interval_from_previous(lev,REAL,LIST)[i][new_time_level] =Level_root_time_interval(lev) /Level_axis_aggregate_refinement_factor_from_root(lev,TIME);Level_absolute_time(lev,REAL,LIST)[i][new_time_level] =Level_absolute_time(lev,REAL,LIST)[i][old_time_level] +Level_time_interval_from_previous(lev,REAL,LIST)[i][new_time_level];}Level_old_time_match(lev);} Figure 6.60: Standard incrementer6.4.6 Incrementing Time InformationHAMR's standard incrementing algorithm (Figure 6.60) updates the time information fora level after an integration has been completed. For each RealList that represents timeinformation, the algorithm increments the old and new time level indices modulo the numberof time levels, increments the timestep number, sets the time interval to the root time intervaldivided by the aggregate time re�nement factor, and adds the time interval to the oldphysical time to obtain the new physical time. When all such updates have been made, theincrementer copies the level's physical time values to all �ner levels, to eliminate accumulated239



roundo� error. This last operation is safe, because the incrementer is called after a set of�ner integrations has occurred, at which point the physical time on the �ner level has caughtup to the physical time on the coarser level, except for roundo�.Because the incrementer is applied immediately following the completion of the �neriterations, all operations on the grid occur on the old time level, not on the new time level.The only exception is injecting a value from a parent; in this case, the injection is interpolatedbetween the old and new time levels.6.4.7 Richardson Truncation Error EstimationRichardson truncation error estimation (described in Section 4.4.6), while both intuitiveand mathematically simple, is perhaps the most di�cult algorithm to generalize for anarbitrary solver. Indeed, many implementations of Berger's AMR strategy either implementonly a simpli�ed version of the algorithm, or require considerable reinstrumentation of thesolver. One AMR formulation, for example, required that the solver accept a stride, whichwould be one in the case of genuine evolution or two in the case of half resolution errorestimation calculations. Choptiuk, on the other hand, constantly maintains a half-resolutionshadow hierarchy, computing every alternate timestep on it, which results in a half resolutionapproximation of the error estimation, and which constrains the re�nement factor to powersof two.The aspect of the error estimation algorithm that is the source of all the di�culty is, infact, the half resolution Q2h(u) calculation. While in principle this calculation is straightfor-240



0 1 2 5 6 7 8 93 101 5 7 93 40 2 4 6 8 10
Q(u; 2dx; 2dt) right
Q(u; 2dx; 2dt) left

Figure 6.61: Half resolution grids for Richardson truncation errorward | the solver calculates based on every other value, rather than each value | in practiceit is di�cult to achieve, because in a generalized AMR system the solver is not, and shouldnot be, in a position to know whether the calculation is full resolution or half resolution, orwhether the calculation is genuine or for error estimation. Thus, in order for the truncationerror algorithm to be fully generalized, the Q2h(u) calculation must be performed on a gridthat is in every way identical to the standard grid, except that it has half the resolution. Orrather, it must be performed on 2d such grids, whose values are drawn starting from eitherthe �rst or second value along each axis of the original grid (as shown in Figure 6.61).Still, constructing the half resolution grids should not be overly burdensome. But inaddition to this requirement, the collection of half resolution grids, taken in aggregate, also241



require twice as many ghost boundary values as the full resolution grid (as shown in Figure4.21). These boundary values are drawn not only from parents but from siblings and theexterior as well. It is this requirement that has kept many researchers from implementinggeneralized error estimators.The solution that HAMR implements involves constructing a dummy grid that is identi-cal to the original grid in all but two respects. First, every spatial data item on the dummygrid has a double-width ghost boundary; that is, all stencils are doubled. Second, the orig-inal grid's boundary relationship information is discarded, and its boundary relationshipsare recalculated, thereby providing the necessary information for drawing the appropriatedouble-width set of boundary values, using the existing boundary collection algorithm |whatever that may be. In this manner, proper boundary information is obtained not onlyfrom the parents, but also from siblings and exterior regions | including, conceivably, par-ents, siblings and exterior regions that the original grid does not require (Figure 6.62). Afterthe boundary values have been collected, the expanded grid's non-permanent data items canbe deallocated, because the expanded grid will be used only as a source of values for the halfresolution grids on which Q2h(u) is calculated.In fact, creating the half resolution grids is now trivial. Each of the 2d half resolutiongrids is operated on in turn: it is created; its values are copied directly from the expandedgrid, starting in the boundary region at either the �rst or the second locus along each axisand using a stride of 2, thereby automatically obtaining the appropriate boundary values;the solver is applied to it, just as if it were a standard grid, but using a time interval twice242



Expanded exterior
Original parents

Original sibling
Expanded siblings

Expanded parentsFigure 6.62: Expanded dummy grid boundaries243



the length of the original time interval; the values on the interior of its \new" �eld are copiedinto the interior of the \new" �eld of the original grid, again starting at either the �rst orthe second locus along each axis and using a stride of 2; �nally, it is deleted. In this manner,all of the half resolution grids are solved, but at no time does more than one such grid exist.When all of the half resolution grids have been solved and discarded, the expanded gridcan be discarded as well, since its purpose is merely to provide values for the half resolutiongrids. Thus, during the process of computing the half resolution solution, the extra storagerequired is only the expanded grid | or slightly less, since some of its data items can bedeleted | plus a single grid whose size is 1=2d of the original grid, and two copies of the griddata structure. The value of Q2h(u) for all interior loci is stored in the \new" �eld of theoriginal grid, a �eld that is otherwise unused, because re�nement on a level can occur onlyafter the most recent timestep has been completed, and that timestep's solution is stored inthe \old" �eld.Once the half resolution solution has been obtained, the next step is to obtain the fullresolution solution over two timesteps. This operation is considerably simpler, because it canbe performed on a single grid that is identical to the original. So, a copy of the original gridis created; its boundary values are collected; it is evolved the �rst time; its time informationis incremented; its boundary values are collected again; it is evolved the second time; thevalues on its \new" �eld | Qh(Qh(u)) | are subtracted from the values on the originalgrid's \new" �eld, with the result remaining in the original grid's \new" �eld; �nally, it isdeleted. Thus, during the operation, the total amount of additional memory consumed is the244



amount consumed by the original grid, and when the full resolution timesteps are �nished,the values on the interior of the original grid's \new" �eld are Q2h(u) � Qh(Qh(u)), whichis, in fact, the Richardson truncation error estimate times a constant.Super�cially, this approach to computing truncation error appears extraordinarily waste-ful of memory; after all, an additional 2d+2 grids are required to obtain the result. On closerexamination, however, it becomes clear that the algorithm is insigni�cantly more wastefulthan an approach whose memory consumption is fully optimal, even one which achievesoptimal consumption by reinstrumentation of the solver. The reason this is so is that, nomatter how one approaches computing the half resolution timestep, the two full resolutiontimesteps absolutely require a complete copy of the original grid. This requirement arisesbecause these timesteps, if performed on the original grid itself, would overwrite the valuesof the old time level(s), so the old values must be stored separately from the full resolutiongrid, and because of the need to store the half resolution result before computing its two fullresolution counterparts. In other words, the \new" �eld is needed for storing the interme-diate half resolution result, and the \old" �eld(s) are needed for retaining the \old" results,which will be required either to compute the next genuine timestep at the level that is beingre�ned, if the grid is on the coarsest level being re�ned at the moment, or to be copied ontothe overlapping replacement grids, if it is on a �ner level.Thus, since an entire additional grid is required for computing the full resolution result,the waste associated with this approach is the di�erence between the size of the original gridand the sum of the expanded grid and one of the half resolution grids. Careful examination245



reveals that the relative waste is large only in the case of very small grids, but that in suchcases the absolute waste is quite small (aside from the �xed size of the additional grid datastructure). For example, an 8� 8� 8 grid with a seven point stencil will have a 14� 14� 14bounded �eld comprising 2744 loci, while its expanded counterpart with a thirteen pointstencil will have a 20 � 20 � 20 bounded �eld comprising 8000 loci, as well as a 4 � 4 � 4half resolution grid with a seven point stencil, which will have a 10 � 10� 10 bounded �eldcomprising 1000 loci; thus, the total waste will be 8000 + 1000� 2744 = 6256 loci, or about2.28 times the original bounded �eld | which is a high relative waste but a very low absolutewaste. On the other hand, a 64�64�64 grid with a seven point stencil will have a 70�70�70bounded �eld comprising 343000 loci, while its expanded counterpart with a thirteen pointstencil will have a 76�76�76 bounded �eld comprising 438976 loci, as well as a 32�32�32half resolution grid with a seven point stencil, which will have a 38 � 38� 38 bounded �eldcomprising 54872 loci; thus, the total waste will be 438976 + 54872 � 343000 = 150848 loci,or about 0.44 times the original bounded �eld | which is a high absolute waste but a lowrelative waste.Thus, this approach provides a fully generalized truncation error estimation algorithm,which will function perfectly well regardless of the details of the boundary value collector,the solver, the time incrementer and other such AMR modules, yet it requires very littlememory beyond the absolutely optimal memory consumption achievable with radical re-instrumentation of the application algorithms. This approach's generality is achieved notonly without reinstrumentation of application routines, but also without declaring a single246



additional data item.6.4.8 Flux CorrectionAlthough HAMR's ux correction algorithm (Figure 6.63) is algorithmically simple, it in-volves a variety of operations, and demonstrates the importance of functional data attributes.The algorithm begins by setting the grid's boundaries to zero, for reasons that will be ex-plained presently. Next, the correction values on all of the child grids are calculated, de-scribed below. A query to the speci�cation produces the correction data attribute, fromwhich the proper surfaces of the children are obtained. Then, for each minimum (left) sur-face of each child, the correction values are subtracted from the coarse cells immediatelybefore the surface, and for each maximum (right) surface, the correction values are added tothe coarse cells immediately after the surface.Interface correction (Figures 6.64 and 6.65) begins with a query to the speci�cationthat obtains the precorrection and postcorrection attributes, from which pointers to thecorrection surfaces are obtained. Then, for each interface, the precorrection surface valuesare divided by the product of the re�nement factors not along that surface | for example,an x-face is divided by ry � rz. Next, the postcorrection surface values are subtracted fromthe precorrection surface values, with the result placed in the postcorrection surface. Then,the �ner postcorrection surface values are summed and placed into the associated coarserprecorrection surface loci. Finally, the results are divided by the sizes of the coarse cell faces.247



Void Grid_standard_correct (Grid grid, Index i) {Grid_old_boundary_set_to_constant(grid, (Real)0);for (c = 0; c < Grid_interior_children(grid); c++)Grid_standard_correct_interfaces(Grid_interior_child(grid)[c], i);prest = Specification_precorrection_data_archetype_component_query(Grid_specification(grid),GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_SYSTEM_LEVEL);prep = Specification_precorrection_data_archetype_component_query(Grid_specification(grid),GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_PARAMETER);for (c = 0; c < Grid_interior_children(grid); c++) {precorrection_data =*Grid_parameter_address(child_grid,prest, REAL, SURFACEPARAMETERSET, prep);for (interface_axis = 0; interface_axis < dimension; interface_axis++) {IndexPoint_copy(interface_start,Grid_child_interior_in_interior(grid)[MINIMUM], dimension);interface_start[interface_axis] -= 1;for (member = 0; member < members; member++)RealField_offset_add(grid_data[mb][old_time_level], grid_data[mb][old_time_level],precorrection_data[interface_axis][MINIMUM][mb],axis_set, staggering, staggering, interface_staggering,axis_loci, axis_loci, precorrection_axis_loci,precorrection_axis_loci,interface_start, interface_start, index_zero, dimension);interface_start[interface_axis] =Grid_child_interior_in_interior(grid)[MAXIMUM][interface_axis] + 1;for (member = 0; member < members; member++)RealField_offset_subtract(grid_data[mb][old_time_level], grid_data[mb][old_time_level],precorrection_data[interface_axis][MAXIMUM][mb],axis_set, staggering, staggering, interface_staggering,axis_loci, axis_loci, precorrection_axis_loci,precorrection_axis_loci,interface_start, interface_start, index_zero, dimension);} } } Figure 6.63: Standard corrector248



Void Grid_standard_correct_interfaces (Grid child_grid, Index i){ prest =Specification_precorrection_data_archetype_component_query(Grid_specification(child_grid),GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_SYSTEM_LEVEL);prep =Specification_precorrection_data_archetype_component_query(Grid_specification(child_grid),GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_PARAMETER);precorrection_data =*Grid_parameter_address(child_grid,prest, REAL, SURFACEPARAMETERSET, prep);postst =Specification_postcorrection_data_archetype_component_query(Grid_specification(child_grid),GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_SYSTEM_LEVEL);postp =Specification_postcorrection_data_archetype_component_query(Grid_specification(child_grid),GRID, REAL, SPACETIMEVARIABLESET, i, ARCHETYPE_PARAMETER);postcorrection_data =*Grid_parameter_address(child_grid,postst, REAL, SURFACEPARAMETERSET, postp);Figure 6.64: Interface correction (part 1)
249



for (interface_axis = 0; interface_axis < dimension; interface_axis++) {for (axis = AXIS1; axis <= maxaxis; axis++) if (axis != interface_axis) {interface_refinement_factor *=Grid_refinement_factor_from_coarser(grid)[axis];interface_size *= Grid_isotropic_cell_size(child_grid)[axis]; }for (interface_ext = MINIMUM; interface_ext <= MAXIMUM; interface_ext++)for (member = 0; member < members; member++) {RealField_contiguous_divide_by_constant(precorrection_data[member][interface_axis][interface_ext],precorrection_data[member][interface_axis][interface_ext],axis_set, staggering, precorrection_axis_loci, dimension,(Real)interface_refinement_factor);RealField_refinement_from_first_subtract(postcorrection_data[member][interface_axis][interface_ext],precorrection_data[member][interface_axis][interface_ext],postcorrection_data[member][interface_axis][interface_ext],axis_set, staggering, staggering, staggering,postcorrection_axis_loci,precorrection_axis_loci, postcorrection_axis_loci,postcorrection_axis_loci,index_zero, index_zero, index_zero, ...Grid_refinement_factor_from_coarser(child_grid), dimension);RealField_projection_sum(precorrection_data[member][interface_axis][interface_ext],postcorrection_data[member][interface_axis][interface_ext],axis_set, staggering_with_interface_axis_offset_from_center,precorrection_axis_loci,postcorrection_axis_loci, precorrection_axis_loci,index_zero, index_zero, index_zero, index_zero,Grid_refinement_factor_from_coarser(child_grid), dimension);RealField_contiguous_divide_by_constant(precorrection_data[member][interface_axis][interface_ext],precorrection_data[member][interface_axis][interface_ext],axis_set, staggering, precorrection_axis_loci, dimension,(Real)interface_size);} } } Figure 6.65: Interface correction (part 2)250



More formally, on a z-face, for example,prezmin = F prepostzmin = Prti=1 fpostprezmin  prezminrxry � Fprerxrypostzmin  prezmin � postzmin � Fprerxry � Prti=1 fpostprezmin  Prxi=1Pryj=1 postzmin � Prxi=1Pryj=1 �Fprerxry � Prti=1 fpost�� F pre � Prxi=1Pryj=1Prti=1 fpostprezmin  prezmin�x��y � Fpre �Prxi=1Pryj=1Prti=1 fpost�x��yThus, the proper correction is obtained from the uxes, without requiring any extra storagefor intermediate results and at the cost of a single additional division by a constant.When a �ne grid abuts the interface of its coarser parent (Figure 6.66), the correctionvalues along that interface are added to the ghost boundary of the parent, which as notedabove has been set to zero. Then, after all of the grids have been corrected, the gridboundaries are added to the sibling interiors that overlap them, in much the same manneras sibling values are copied into the ghost boundaries during boundary collection. Sincethe boundaries were set to zero before correction, any non-zero values in the boundaries arecorrection values that should be applied to computed coarse cells immediately adjacent to the�ne interfaces, but that were not because those coarse cells are on other grids. Those othergrids are the siblings of the corrected grid, so by adding the grid boundaries to the overlappingsibling interiors, the correction values are properly applied. Because of grid coverage, all251



Figure 6.66: Sibling correction252



corrections are constrained to apply to cells within the corrected grid, to cells within siblings,or to cells on the exterior; in the last case, the correction values are superuous.6.4.9 SummaryUltimately, the AMR algorithms contained in HAMR constitute an achievement of whathas, until now, been merely a long-term interest of the AMR community: a general-purposeAMR framework. Without the underlying data infrastructure that HAMR provides, general-purpose AMR is at best di�cult, not only because of the data needs of simulations but alsobecause of the need for the ability to express the data and method relationships. Thus, thecontribution of this dissertation is expressed clearly by HAMR's capabilities: to incorporateadaptivity into an almost limitless variety of structured multiscale simulations.6.5 HAMR SummaryFundamentally, the distinguishing characteristics of HAMR that set it apart from other im-plementations of Berger's AMR strategy are those qualities which promote generality andautonomy. Each component of the HAMR system { the data types, the function library,the data structure and management, and the implementations of the AMR algorithms |contribute to these two properties. The wide variety of data types makes possible the in-corporation of applications and algorithms whose data needs are complex. The exibility inperforming various basic operations, which the many AMR algorithms require, are provided253



by the function library in a self-consistent, intuitive manner. The data management in-frastructure provides not only autonomy, but also the ability to decouple data managementissues from both the AMR algorithms and the application. Finally, the AMR algorithmsthemselves take full advantage of the exibility and generality that are a natural outgrowthof the properties and capabilities of the other components.Designing, implementing and testing HAMR was a long and laborious process, the extentof which was not anticipated at the outset. During the overwhelmingmajority of this process,no aspect of the components had any signi�cant value beyond its anticipated future rolewithin the overall environment. HAMR's many layers are so completely integrated that itwas impossible to employ it for anything useful prior to completion, and this facet of itsdevelopment proved intensely frustrating to all involved.In the end, however, HAMR has proven itself, in design, implementation, and execution.

254


